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Abstract

Food and beverage authentication is the process by which food or beverages

are verified as complying with its label description, e.g., verifying if the denomi-

nation of origin of an olive oil bottle is correct or if the variety of a certain bottle

of wine matches its label description. The common way to deal with an authen-

tication process is to measure a number of attributes on samples of food and

then use these as input for a classification problem. Our motivation stems from

data consisting of measurements of nine chemical compounds denominated An-

thocyanins, obtained from samples of Chilean red wines of grape varieties Caber-

net Sauvignon, Merlot and Carménère. We consider a model-based approach to

authentication through a semiparametric multivariate hierarchical linear mixed

model for the mean responses, and covariance matrices that are specific to the

classification categories. Specifically, we propose a model of the ANOVA-DDP

type, which takes advantage of the fact that the available covariates are discrete

in nature. The results suggest that the model performs well compared to other

∗Departamento de Estad́ıstica, Facultad de Matemáticas, Pontificia Universidad Católica de Chile,
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parametric alternatives. This is also corroborated by application to simulated

data.

Key Words: Classification, Dependent Dirichlet Process, Wines.

1 Introduction

Food and beverage authentication is the process in which food or beverages are verified

as complying with its label description (Winterhalter; 2007). From the viewpoint of

consumers’ acquisition, the mislabeling of foods represents commercial fraud (Mafra

et al.; 2008). On the other hand, producers and sellers could have problems if their

products are mislabeled. Food authentication is important for foods and beverages

of high commercial value, like honey, wines or olive oil, because their prices depend

of their quality, variety or origin. It is then important to uncover unscrupulous sellers

who decide to increase their profit by adulterating these products with similar but lower

quality substances. Misleading labeling might also have negative health implications,

especially when the food has undeclared allergenic compounds.

Because of the growing demand from consumers of clarity and certainty in food

origins and contents, the importance of food authentication has substantially increased

in recent years. Many analytical tools and methods used for authenticity have been

consequently developed. In particular, there is a very active area of research on the

determination of chemical markers for classification and/or authentication of wines.

Anthocyanin profiles are known to be specially useful for the purpose of wine variety

authentication. See, e.g., Eder et al. (1994), Berente et al. (2000), Holbach et al. (2001),

Revilla et al. (2001), Otteneder et al. (2004) and von Baer et al. (2007).

Data analysis methods for authentication purposes have been developed mainly
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outside the statistics fields, and most of them are exploratory techniques designed to

deal with multivariate datasets. Probabilistic modeling for discrimination and authen-

tication purposes was proposed by Brown et al. (1999), who used Bayesian methods

to discriminate 39 microbiological taxa using their reflectance spectra. More recently,

Dean et al. (2006) used a Gaussian mixture model with labeled and unlabeled samples,

with application to the authentication of meat samples from five species, and the ge-

ographic origin of olive oils. Toher et al. (2007) compared model-based classification

methods such as Gaussian mixtures, with partial least squares discriminant analysis,

considering samples of pure and adulterated honey.

We propose a model-based procedure to solve the authentication problem of food

and beverages. The motivation comes from a dataset consisting of measurements of nine

chemical compounds denominated Anthocyanins, obtained from samples of Chilean red

wines of grape varieties Cabernet Sauvignon, Merlot and Carménère. We propose a

semi-parametric Bayesian model that allows us to define a flexible distribution G for

the joint measurements. The model has the advantage of not having to assume any

parametric form, which may be particularly difficult to check in multivariate cases.

Increased flexibility is added by allowing G to be formulated under the formalism of

dependent random probability measures as in De Iorio et al. (2004). A key aspect of

the proposed approach is that we formally extend previous univariate semi-parametric

models as in de la Cruz et al. (2007b) to the multivariate case.

The rest of the paper is organized as follows. We first present the wine dataset and

the related authentication problem in Section 2. In Section 3 we give a brief theoretical

background about Bayesian semi-parametric models and dependent Dirichlet processes,

and discuss our approach to the authentication problem. In Section 4 we present

the model, which is an extension of the univariate semi-parametric Bayesian linear
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mixed model (Dey et al.; 1998) to the multivariate case. In Section 5 we illustrate the

performance of the proposed model in a simulated data set. In Section 6 we apply the

model to authenticate red wines samples based on their anthocyanin profile. The paper

concludes in Section 7 with a discussion and final remarks.

2 The motivating dataset

We consider a dataset consisting of measurements of concentrations of nine antho-

cyanins on samples of Chilean red wines. Anthocyanins are a group of chemical

compounds present in red wine, which confer to this beverage its characteristic red

color and are transferred from the grape skins to wine during the winemaking pro-

cess. The dataset includes the grape variety for each sample as declared by the pro-

ducer, the year of harvest and the geographical origin or valley. The grape vari-

eties in the dataset are Cabernet Sauvignon (228 samples), Carménère (95 samples)

and Merlot (76 samples). All wine samples came directly from wineries located in

the valleys of Aconcagua, Maipo, Rapel, Curicó, Maule, Itata and B́ıo-B́ıo in Chile.

They correspond to the vintages 2001, 2002, 2003 and 2004. Anthocyanin determi-

nation was made by reverse phase HPLC based on the method described by Holbach

et al. (1997), Otteneder et al. (2002) and OIV (2003), with some minor modifica-

tions. More details about anthocyanin determination for the dataset can be found in

von Baer et al. (2005) and von Baer et al. (2007). A main concern for the described

dataset is the authentication of grape variety using the log-proportion of the follow-

ing anthocyanins: delphinidin-3-glucoside (DP), cyanidin-3-glucoside (CY), petunidin-

3-glucoside (PT), peonidin-3-glucoside (PE), malvidin-3-glucoside (MV), peonidin-3-

acetylglucoside (PEAC), malvidin-3-acetylglucoside (MVAC), peonidin-3-coumaroylglucoside

(PECU), and malvidin-3-coumaroylglucoside (MVCU). To do so, we will propose a mul-
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tivariate linear mixed model in Section 4 that attempts to characterize the variability

in anthocyanin log-proportions in terms of variety and valley of origin. We also point

out that we will ignore vintage year in our development. The pragmatical reason for

this is that by doing so we may easily incorporate data from new years as they become

available, without the need to modify the model. In support of this choice, we refer

to Gutiérrez et al. (2010) who used the year of harvest as a continuous predictor when

proposing a Bayesian parametric model for the same data. The idea was to overcome

this very same limitation. Yet, the effect of vintage year was negligible in that context.

3 Some Background Material

Semi-parametric models have both, parametric and nonparametric parts, the distinction

between these being that the parameters belong to a finite and infinite dimensional

space, respectively. Semi- and non-parametric Bayesian models are used mainly to

avoid critical dependence on parametric assumptions. An important application of such

modeling line is to random effects distributions in hierarchical models, where often little

is known about the specific form of such distributions (Müller and Quintana; 2004). To

handle the nonparametric part of the model we need to define a random measure on the

space of distribution functions. The most popular such choice is the Dirichlet process

(DP) (Ferguson; 1973).

In a food authentication context scenario, we need to build a model that adequately

accounts for all the problem-specific features. In the context of our motivating dataset,

it is reasonable to think of wines coming from the same valley as being correlated,

because soil and weather conditions are similar within a given valley. The usual (and

simplest) way to induce a correlation structure is by incorporating random effects or

sample specific parameters in a model. Let αi denote the random effects and let zi be a
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categorical covariate with k levels, (e.g. k different regions of origin). We could assume

a single nonparametric prior on αi for all samples, without reference to the levels of

zi. Alternatively, we could consider differences by putting k independent priors on αi.

These two extreme modeling strategies imply that Gz1 = · · · = Gzk for the former and

Gz1 . . . , Gzk to be mutually independent for the latter. MacEachern (1999) proposes

a modeling strategy, the Dependent Dirichlet Processes (DDP), that allows the set of

random effects distributions to be similar but not identical to each other. MacEachern

(1999) defines a nonparametric probability model for Gz in such a way that marginally,

for each z = zj, (j = 1, . . . , k), the random measure Gz follows a DP. In this context,

the DP representation proposed by Sethuraman (1994) is quite useful. Sethuraman’s

representation establishes that any G ∼ DP (M,G0) can be represented as an infinite

mixture of point masses:

G(·) =
∞∑
h=1

whδµh(·), µh
iid∼ G0

wh = Uh
∏
j<h

(1− Uj) with Uh
iid∼ Beta(1,M). (1)

The key idea behind the DDP is to introduce dependence across the Gz measures by

assuming the distributions of the point masses to be dependent across different levels of

z (i.e. µzh), but still independent across h. If the weights are assumed to be the same

across z, the dependent probability measure can be represented as Gz(·) =
∑∞

h=1whδµzh .

The last idea was used by De Iorio et al. (2004) in the construction of an ANOVA DDP

type model. The same approach was used in spatial modeling by Gelfand et al. (2005),

who used a Gaussian process for the atoms, Caron et al. (2006) in times series, de la

Cruz et al. (2007b) in classification, De Iorio et al. (2009) in survival analysis and

recently, by Jara et al. (2010) who proposed a Poisson-Dirichlet process for the analysis
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of a data set coming from a dental longitudinal study. Griffin and Steel (2006) point out

that letting only the atoms to depend on covariate values may lead to certain problems

when points in the domain are far from the observed data. They propose an approach

that avoids this by locally updating the process and inducing dependence in the weights

through distance-based similarities in the ordering of atoms, through viewing the atoms

as marks in a point process. Other works where covariate dependence is introduced in

the weights are Dunson et al. (2007), and Dunson and Park (2008). Müller et al. (1996)

considered a completely different approach for inducing dependence in G. They used a

DP mixture of normals for the joint distribution of y and z, and then focused on the

implied conditional density of y given z for estimating the mean regression function.

A recent reference about nonparametric Bayesian statistics, DDP models and their

applications can be found in Hjort et al. (2010).

The almost sure discreteness of the Dirichlet process makes it inappropriate as a

model for a continuous quantity y. A standard procedure for overcoming this difficulty

is to introduce an additional convolution so that

H(y) =

∫
f(y | θ)dG(θ) with G ∼ DP (M,G0). (2)

Such models are known as DP mixtures (DPM) (Antoniak; 1974). The mixture model

(2) can be equivalently written as a hierarchical model by introducing latent variables

θi and breaking the mixture as

yi | θi ∼ f(yi | θi), θi ∼ G, and G ∼ DP (M,G0). (3)

For the majority of food authentication problems the responses are continuous mul-

tivariate and covariates are discrete. This is the case for the data described in Section 2.
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Thus we will adopt the popular semiparametric modeling strategy that consists of in-

troducing dependence in the random effects distribution and then adding a convolution

with a continuous kernel. The ANOVA-DDP approach of De Iorio et al. (2004) is a nat-

ural way to build the desired dependence into the model, as will be discussed below in

Section 4. We remark here that a model that defines dependence in terms of distances

would not be appropriate for an authentication problem with categorical covariates, as

is our case.

4 The model

We first note that due to the multivariate nature of many authentication problems

(which is also the case of the wine data), it would not be appropriate to treat the

individual responses in an univariate way.

We assume that the i-th response vector is related to the covariates in a linear way.

Furthermore, we assume that there are fixed and random effects in the model. The

model for the i-th unit in the u-th group is thus given by

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , nu, u = 1, . . . , g (4)

θiu ∼ Hz(θiu)

Hz(θ) =

∫
N(θ | zα, τ)dG(α)

G ∼ DP (M,G0),

where yiu is a vector of responses in Rp, B is a p × q matrix of fixed effects, xiu is a

vector of covariates in Rq, θiu is a p × 1 vector of unit-specific random effects, ziu is a

p×pk design matrix for random effects and αi is a pk×1 vector of latent variables that

define the random effects. The subscript u denotes the group or class in a classification
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context. Model 4 implies that Hz(θ) =
∑∞

h=1whN(θ | zαh, τ) is an infinite mixture

of normal distributions. As usual in mixture models, posterior simulation proceeds by

breaking the mixture in (4) by introducing latent variables αi:

θiu = ziuαi + ηi, αi ∼ G, G ∼ DP (M,G0), and ηi ∼ Np(0, τ). (5)

By simplicity, we choose a multivariate normal model for the base measure G0 ≡

Npk(0, R) and as usual in this context, we assume prior independence for all remaining

parameters. The prior distribution for matrix B = [β1, β2, . . . , βq] is assumed to be in-

dependent by columns, that is β1, β2, . . . , βq are mutually independent with distribution

given by

β1, . . . , βq ∼ Np(β0j,Λ), j = 1, . . . , q. (6)

The prior distributions for the variance-covariance matrices Σu, u = 1, . . . , g, and τ are

given by

Σ1, . . . ,Σg ∼ IWp(ν0, Q0), τ ∼ IWp(γ0,Φ0). (7)

We complete the Bayesian formulation of model (4) by specifying the prior for hyper-

parameters R, β01, . . . , β0q, Λ and M as

R ∼ IWpk(r0, R0), β01, . . . , β0q ∼ Np(α0, τ0) (8)

Λ ∼ IWp(L0, t0), M ∼ Ga(a1, a2) (9)

The random distribution Hz(θ) in model 4 is dependent of the level of covariate z.
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As such, this is a variation of the model proposed by De Iorio et al. (2004), but our

model adds fixed effects and allows us to work with multivariate data. For the wine data

analysis later in Section 6, we will let the fixed effects be varieties and random effects be

the different regions of origin. Matrix R in the model allows for correlation between all

components of the vector αi, which implies correlation between different components

of the response vector and between different levels of z. The full conditional posterior

distributions and details of the posterior simulation scheme are given in the Appendix

section.

Consider now the classification approach. Let yn = (y1, ..., yn, x1, ..., xn, z1, ..., zn, g1, ..., gn)

denote the training dataset, where yi is the response vector, xi is the vector of covari-

ates for fixed effects, zi is a vector of covariates for random effects and gi represents

the known group label for the ith unit. Consider a new unit for which the response

yn+1 and covariate vectors xn+1 and zn+1 are known, but its label gn+1 is unknown.

We want to assign a label u to the new unit, where u ∈ {1, . . . , g}. Consequently it is

necessary to estimate the classification probability P (gn+1 = u | yn+1, y
n). Following

De la Cruz-Meśıa and Quintana (2007) and Gutiérrez et al. (2010) we use

P (gn+1 = u | yn+1, y
n) ≈ 1

C

C∑
c=1

πup(yn+1 | Θ(c)
u )∑

l πlp(yn+1 | Θ(c)
l )

. (10)

In (10), πu = P (gi = u) may be taken as the empirical group proportions. We propose

classifying an existing unit, i, and a future one, n+1, using the zero-one law considered

in Hastie et al. (2001)

ĝi = arg max
u

P (gi = u | yn) and ĝn+1 = arg max
u

P (gn+1 = u | yn, yn+1), (11)
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i.e. assigning the label as the category that maximizes the classification probability

(10).

5 Classification performance of the proposed model

To evaluate the classification performance of the proposed model, we simulated a dataset

considering g = 2, n = 100, p = 2, q = 2, k = 2. The dataset was simulated from a

mixture of p-variate normal distributions,
∑8

i=1 ωiN(µi,Σ), where ω1, . . . , ω8 are given

by (0.25, 0.12, 0.13, 0.1, 0.1, 0.05, 0.12, 0.13) respectively, µ1 = (1.1, 2.3)t, µ2 =

(0.1,−2)t, µ3 = (1.3, 5)t, µ4 = (−3, 3.4)t, µ5 = (−0.1, 7)t, µ6 = (1.8, 5)t, µ7 = (−4, 1)t,

µ8 = (1,−2)t and Σ is given by σ11 = 0.932, σ12 = 0.11 and σ22 = 1.632. Figure 1

shows the simulated dataset. Here, g = 2 means that we have to classify between

two categories and k = 2 means that we have two levels for the covariate z. The

hyperparameters values were taken as β0 = (0, 0)t, τ0 = 100I2, Q0 = I2, L0 = I2,

ν0 = 4, r0 = 4, t0 = 4, R0 = Ipk, γ0 = 4, φ0 = 0.001Ip and a1 = a2 = 1. Table 1

shows the classification results of the proposed Bayesian semiparametric model (BSP),

comparing with linear discriminant analysis (LDA), which is the usual technique used

in the literature for this type of problem, and a parametric (BP) version of model (4),

defined as:

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , n, u = 1, . . . , g (12)

θiu = ziuα + ηi, ηi ∼ Np(0, τ)

α ∼ Npk(0, R)

Using the proposed BSP model, we obtained a classification error of 7.0% in the

training set and 16% using leave-one-out cross-validation (LOOCV). In contrast, the
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Figure 1: Simulated dataset

BP model resulted in a classification error of 12.0% in the training set and 24% under

LOOCV, while the corresponding figures for the LDA were 25.0% and 27%, respectively.

A common way to assess the performance of classification rules is the Receiver Operating

Characteristic curve (ROC) shown in Figure 2, which plots the true positive rate against

the false positive rate for all the different possible cutpoints. From the ROC curves we

also calculated the Area Under ROC curve (AUC) for the three models, with higher

values corresponding to models with better discrimination capabilities. We obtained

0.9792 for the BSP model, 0.9334 for the BP model, and 0.7464 for LDA. These results
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BSP BP LDA
1 2 1 2 1 2

Category 1 46 (43) 4 (7) 47 (35) 3 (15) 42 (42) 8 (8)
2 3 (9) 47 (41) 9 (9) 41 (41) 17 (19) 33 (31)

Table 1: Classification performance. Values within parenthesis were obtained using
leave-one-out cross-validation technique

clearly suggest the superiority of the proposed BSP model for wine authentication,

compared to the other alternatives.

Another important aspect of the analysis concerns comparing model adequacy of

the BP versus our BSP proposal. To this effect we calculated the Conditional Predictive

Ordinates (CPOi) (Chen et al.; 2000), summarized in the log-pseudo marginal likeli-

hood statistic LPML =
∑n

i=1 log(CPOi) (Geisser and Eddy; 1979), and the Deviance

Information Criterion (DIC) (Spiegelhalter et al.; 2002). Models with lower DIC and

with higher LPML values are to be preferred. The DIC values were 730.0 and 855.2 for

the BSP and BP models, respectively. Furthermore, the corresponding LPML values

were -370.5 and -427.9. Both criteria consistently point to the superiority of the BSP

model compared to the BP one. Overall, the results suggest that the BSP model is

more flexible, specially when the data cluster between and within covariate levels.

6 Performance of the model with wine dataset

We consider now application of the proposed BSP model to the wine dataset. The

response vector is formed by the nine anthocyanins listed in Section 2. As covariates,

we use grape variety (fixed effects) and valleys (random effects). The hyperparameter

values were taken as β0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)t, τ0 = 100I9, Q0 = 0.1I9, L0 = 0.01I9,

ν0 = 11 r0 = 65, t0 = 11, R0 = 10Ipk, γ0 = 11, φ0 = 0.01Ip and a1 = a2 = 1, where
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Figure 2: ROC curves for classification under Bayesian semiparametric model BSP,
Bayesian parametric BP and linear discriminant analysis LDA.

p = 9, q = 3 and k = 7. The resulting prior densities are proper, but the one for

B is vague and hence relatively uninformative. The prior density for R is relatively

uninformative too. All the variance covariance matrices priors were assumed diagonal.

Table 2 shows the classification results, where the values within parenthesis were

obtained using a LOOCV approach. The classification error obtained in the training

set was 1.5%, and 3.76% under LOOCV. These values are better than those obtained

by Gutiérrez et al. (2010) with the same dataset but applying a Bayesian parametric

model, namely, 3.26% in the training set and 4.01% using LOOCV. Table 3 shows

the AUC values, which were calculated based on separate ROC curves for each grape

variety, and for each of the BSP and BP models. All these values are very high, with
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Variety Carménère C. Sauvignon Merlot Error
Carménère 95 (91) 0 (2) 0 (2) 0.00% (4.21%)

C. Sauvignon 0 (1) 228 (225) 0 (2) 0.00% (1.32%)
Merlot 6 (7) 0 (1) 70 (68) 7.9% (10.53%)

Total error 1.5% (3.76%)

Table 2: Misclassification rate for the three grape varieties

the BSP model attaining the best performance across the three grape varieties. When

comparing the BSP and BP models, the DIC and LPML statistics values were -6473.6

and 2987 for the former, and -5493.7 and 2425.2 for the second. Again, these results

suggest that the proposed BSP model provides a better fit.

Grape variety AUC BSP AUC BP
Cavernet Sauvignon 0.9999999 0.9969221

Merlot 0.9990223 0.9867403
Carménère 0.9991690 0.9863574

Table 3: Area under ROC curve

Figure 3 displays bivariate posterior predictive distributions for Carménère wines

from the valleys of Aconcagua, Maipo, Rapel and Curicó considering anthocyanins

PECU and MVCU. The points on the graph are the observed values. We can see

the changes in the posterior predictive distribution across valleys. Predictions for the

Aconcagua and Maipo valleys are of similar form, with some evidence of asymmetry in

both cases. Predictions for The Rapel valley show more variability, as dictated by the

observed data, but the model provides a reasonable fit to this behavior. Finally, the

Curicó valley also exhibit asymmetry, but in a different direction than the others we

have displayed.

Figure 4 shows the bivariate predictive posterior distributions for Cabernet Sauvi-

gnon, Carménère and Merlot from Rapel valley considering the PEAC and MVAC
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Figure 3: Bivariate posterior predictive distributions with BSP model for Carménère
wines from the Aconcagua, Maipo, Rapel and Curicó, with points representing observed
values. The anthocyanins considered here were PECU and MVCU.

anthocyanins. This plot is interesting because it shows how informative are PEAC

and MVAC in terms of the target classification. These two anthocyanins show a good

separation between Cabernet Sauvignon and the rest of the grape varieties, but it is

clear that some Merlot samples are located near the Carménère ones. This behavior is

reasonable because some years ago, Carménère, which in other countries disappeared

due to phylloxera, was rediscovered in Chile. Formerly, all vineyards planted with this

grape variety in Chile were declared as Merlot. Using SSR DNA markers to confirm va-
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rietal identity, Hinrichsen et al. (2001) found that from a total of 93 vines of five Chilean

vineyards, originally planted as Merlot, four vines matched Carménère. This leads to

the conclusion that at the time of collecting wine samples, those vineyards declared

as Carménère are correctly identified with high probability, but certain percentage of

vineyards declared as Merlot, still correspond to Carménère.
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Figure 4: Bivariate posterior predictive distributions for Cabernet Sauvignon, Merlot
and Carménère wines from the Rapel valley, with points representing the observed
values.

7 Concluding Remarks

We have proposed a linear mixed effects model for wine authentication, featuring a

flexible model for random effects that does not require the restricting ourselves to a
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given parametric form. We did so by resorting to Dependent Dirichlet Processes, which

allow the set of random effects distributions to be similar but not identical to each

other, depending on levels of a covariate. For the authentication problem, dependence

on covariate levels is important because it is reasonable to think that foods or beverages

that come either from the same region of origin, or those which were made with the same

technology, could be similar or correlated. The ANOVA-DDP approach was suitable to

our purposes, but other types of nonparametric priors could be considered.

The proposed BSP model provided a better fit to the data than a parametric al-

ternative, as we showed in the simulation example and in the application to the wine

data. In terms of the target classification, the BSP model also provided slightly better

results than other alternatives. Our proposal was motivated by food authentication,

but it could be used in any situation where the aim is to classify subjects or units into

g groups, on the basis of multiple responses and covariates.
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8 Appendix

In this section we give the MCMC algorithm that was used for posterior simulation

under the proposed model. Because the model is of conjugate type, we use algorithm

2 in Neal (2000). Let c = (c1, . . . , cn) denote a vector that captures the clustering of αi

18



and let α = (αc : c ∈ {c1, . . . , cn}). To resample the configurations ci, we proceed with

the following two steps:

Step 1

If c = cj for some j 6= i we compute the probability that the i-th element in c equals

other element in the same set as

P (ci = c | c−i, θi, α)

= b
n−i,c

n− 1 +M
(2π)−p/2|τ |−1/2 exp

{
−1

2
(θi − ziαc)tτ−1(θi − ziαc)

}
. (13)

Here ni,c is the number of ci that are qual to c, c−i are all the cj for j 6= i and b is such

that if c = cj then
∑

j:j 6=i{P (ci = c)} + P (ci 6= cj∀j 6= i) = 1. Next, we compute the

probability that ci is different to any other element in c as

P (ci 6= cjfor allj 6= i | c−i, θi, α) = b
M

n− 1 +M
(2π)−p/2|τ |−1/2|R|−1/2|Di|1/2×

exp

{
−1

2
[θtiτ

−1θi − [θtiτ
−1zi]Di[z

t
iτ
−1θi]]

}
. (14)

If the imputed value of ci, sampled based on (13) and (14), is not associated with

any other observation, it is necessary to draw a value of αci from Hi, the posterior

distribution for α based on the prior G0 and the single observation θi. In our case Hi

is given by Hi ≡ Npk(α̃i, Di) where Di = [ztiτ
−1zi +R−1]−1, and α̃i = Di[z

t
iτ
−1θi].

Step 2

In the second step, for all c ∈ {c1, . . . , cn} we draw a new value αc given all the θi for

which ci = c, that is, from the posterior distribution based on the prior G0 and all
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the data points currently associated with latent class c. In our case, this is given by

Npk(α̃c, E), where E = [
∑

i:ci=c
ztiτ
−1zi +R−1]−1 and α̃c = E[

∑
i:ci=c

ztiτ
−1θi].

Now we list all the full conditional distributions for the parametric part of the model.

The specific derivation details are straightforward and therefore omitted.

• For fixed effect parameters we have

βj | other parameters and data ∼ Np(β̃j, Vj), where

β̃j = Vj[

g∑
u=1

{Σ−1u
nu∑
i=1

{xijyi − xijxil1βl1 − · · · − xijxilqβlq − xijθi}}+ Λ−1β0j], and

Vj = [

g∑
u=1

{
nu∑
i=1

x2ijΣ
−1
u }+ Λ−1]−1 where (l1, l2, . . . , lq) 6= j j = 1, ..., q

• For the random effects parameters θ1u, . . . , θnu, u = 1, . . . , g we have that:

θiu | other parameters and data ∼ Np(θ̃iu, Qu), i = 1, . . . , n, where

Qu = [τ−1 + Σ−1u ]−1 and θ̃iu = Qu[τ
−1ziαi + Σ−1u yi − Σ−1u Bxi]

• For hyperparameters β01, . . . β0q we have

β0j | other parameters and data ∼ Np(β̃0j, D0),where

B0j = D0[λ
−1βj + τ−10 β0] j = 1, ..., q and D0 = [Λ−1 + τ−10 ]−1
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• For hyperparameter Λ we have

Λ | other parameters and data ∼ IWp(d,E), where

E =

q∑
j=1

(βj − β0j)(βj − β0j)t + L0 and d = q + t0

• Finally, for the covariance matrices Σ1, . . . ,Σg, τ and R we have

Σu | other parameters and data ∼ IWp(lu, Hu), where

Hu =
nu∑
i=1

(yi −Bxi − θi)(yi −Bxi − θi)t +Q0 and lu = nu + ν0

τ | other parameters and data ∼ IWp(s, T ), where

T =
n∑
i=1

(θi − ziαi)(θi − ziαi)T + Φ0 and s = n+ γ0

R | other parameters and data ∼ IWpk(f,O), where

O =
n∑
i=1

αiα
t
i +R0 and f = n+ r0
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