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Abstract

The process through which food or beverages are verified as complying with

its label description is called food authentication. We propose to treat the au-

thentication process as a classification problem. We consider multivariate obser-

vations and propose a multivariate Bayesian classifier that extends results from

the univariate linear mixed model to the multivariate case. The model allows for

correlation between wine samples from the same valley. We apply the proposed

model to concentration measurements of nine chemical compounds named antho-

cyanins in 399 samples of Chilean red wines of the varieties Merlot, Carménère

and Cabernet Sauvignon, vintages 2001-2004. We find satisfactory results, with

a misclassification error rate based on a leave-one-out cross-validation approach

of about 4%. The multivariate extension can be generally applied to authen-

tication of food and beverages, where it is common to have several dependent
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measurements per sample unit, and it would not be appropriate to treat these as

independent univariate versions of a common model.

Key Words: Bayesian classifier, Gibbs sampling, hierarchical linear models, food

authentication.

1 Introduction

Consumers increasingly demand reassurance of the origin and content of their food and

beverages. The process through which food or beverages are verified as complying with

its label description is called food authentication (Winterhalter; 2007). The wine indus-

try has been using the authentication procedure for a long time. Substantial research

efforts have been put into this particular topic. von Baer et al. (2005) report that some

containers of Chilean red wine have been rejected in Germany because they did not

satisfy the parameters applied there to verify wine varieties. These problems have a

direct impact on producers and their income. Chilean wine represents an important

part of Chile’s worldwide exports, which have increased from 52 to 1,256 million U.S.

dollars over the period 1997-2007. The main red wine varieties are Merlot, Carménère

and Cabernet Sauvignon. Therefore, it is important for sustainable long-term growth

to develop a reliable system to verify product authenticity. In this sense, various au-

thors have proposed to differentiate among red wine varieties using their anthocyanin

profiles (Eder et al.; 1994; Holbach et al.; 1997; Berente et al.; 2000; Holbach et al.;

2001; Otteneder et al.; 2002, 2004; von Baer et al.; 2005; Revilla et al.; 2001; von Baer

et al.; 2007). Anthocyanins are a group of chemical compounds present in red wine,

which confer to this beverage its characteristic red color and are transferred from the

grape skins to wine during the winemaking process.
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Holbach et al. (2001) and von Baer et al. (2007) additionally proposed combining

anthocyanin profiles with shikimic acid concentrations to differentiate between red wine

varieties. Fischerleitner et al. (2005) concluded that among Austrian wines, Cabernet

Sauvignon is the only variety that can be completely identified by its shikimic acid

content. The reason for this is that Cabernet Sauvignon concentrations are far above

those for other Austrian varieties. However, most authors consider only simple relations

between these compounds. The method approved by the OIV in 2003 is also based

on this principle (OIV; 2003). More sophisticated exploratory statistical methods for

classification purposes, based on anthocyanin profiles, have been proposed by Berente

et al. (2000), Otteneder et al. (2002), von Baer et al. (2005), de Villiers et al. (2005),

and von Baer et al. (2007). Linear discriminant analysis and some variations of this

methods (forward or backward selection) have been used by de Villiers et al. (2005)

and Aleixandre et al. (2002). Other approaches include neural networks (Beltrán et al.;

2005; Kruzlicova et al.; 2009) and similarity index based on mid-infrared spectroscopy

data (Bevin et al.; 2006).

Probabilistic modeling for discrimination and authentication purposes was proposed

by Brown et al. (1999), who used Bayesian methods to discriminate 39 microbiological

taxa using their reflectance spectra. In the special case of longitudinal data analy-

sis, Bayesian discrimination has been discussed and used by Brown et al. (2001) and

De la Cruz-Meśıa and Quintana (2007). Binder (1978) describes a general class of

normal-mixture models, discussing some aspects of the use of such models for Bayesian

classification, clustering and discrimination. Mixture models are extensively reviewed

in McClachlan and Peel (2000). Lavine and West (1992) describe Bayesian methods for

classification and discrimination using Gibbs sampling. Mallick et al. (2005) discussed

Bayesian classification using gene expression data, concluding from their comparison
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with other methods, that the Bayesian classification approach performed better than

other popular alternatives. Rigby (1997) carries out a thorough comparison between

Bayesian and classical estimates of P , the probability that a new observation belongs

to one of two multivariate normal populations with equal covariance matrices. The

conclusion was that Bayesian methods generally provide less extreme and more re-

liable estimates of P . Similar conclusions were found by Brown et al. (1999) when

comparing Bayesian classification methods with classical alternatives such as linear or

quadratic discriminant analysis. More recently, Agrawal et al. (2009) consider an in-

cremental framework for feature selection and Bayesian classification for multivariate

normal groups.

In the present paper, we extend the univariate Bayesian linear mixed models to

the multivariate case, and use this model to build a Bayesian classifier of Chilean red

wine varieties using their anthocyanin profiles. In particular, we describe in detail a

Bayesian classification strategy based on multivariate hierarchical linear models. In

the context of classical inference, multivariate linear mixed models were proposed by

Reinsel (1982) and Reinsel (1984). Our methods are based on a similar model, but using

a Bayesian viewpoint. Therefore, our contribution is two-fold in the sense of coherency

of the inferential approach, and the novelty of the application of such methods to food

authentication problems. In doing so, we treat the classes or groups as predefined and

the task is to understand the basis for the classification from a set of labeled samples

(training dataset). This information is then used to classify future subjects.

The rest of this paper is organized as follows. We first give a brief description

of the dataset in Section 2. In Section 3.1, we expose a general multivariate Bayesian

classification approach. In Section 3.2 we present a general multivariate Bayesian linear

model for grape variety authentication. In Section 3.3 we illustrate the proposed general
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classifier using data from Chilean anthocyanin profiles of red wine and describe an

appropriate posterior simulation scheme based on the Gibbs sampling algorithm. In

Section 4 we present the results of the selected model application. Finally, Section 5

discusses the results.

2 The Motivating Dataset

We consider a dataset consisting of concentration measurements of a number of chemi-

cal markers in samples of Chilean red wines. For the purpose of this study, we restrict

ourselves to measurements of anthocyanins, because these compounds are widely used

for red wine authentication, and the methodologies used in their determination are suf-

ficiently accepted and standardized. In addition, we also want to compare the results

with other studies carried out with the same data. The dataset includes the grape vari-

ety for each sample as declared by the producer, the year of harvest, and the geographic

origin or valley. All wine samples came directly from wineries located in the valleys of

Aconcagua, Maipo, Rapel, Curicó, Maule, Itata and B́ıo-B́ıo. As listed, these valleys

are geographically sorted north to south of Chile, and range from 33 to 38 degrees lat-

itude south. The valleys have a wide range of soil types and weather conditions. The

largest one is Maule, which is where most of the available samples were taken. The

wine samples correspond to the vintages 2001 through 2004. Vinification was made

at production scale and samples were taken after malolactic fermentation, but before

blending. Anthocyanin determination was made by reverse phase HPLC based on the

method described by Holbach et al. (1997), Otteneder et al. (2002) and OIV (2003),

with some minor modifications. The response considered for each anthocyanin in a

given sample is its log-concentration proportion, relative to the sum of all of the cor-

responding concentrations across the same sample. This is an important observation,

5



because the concentration of each anthocyanin depends on the processing technology

and maceration time, whereas the proportions between the anthocyanins in a sample

provides a correction for this variation and can show more efficiently different patterns

between varieties due to their different genetic identity. More details about anthocyanin

determination for the dataset can be found in von Baer et al. (2005) and in von Baer

et al. (2007).

The sample size is 399, of which 228 were declared by the producers as Cabernet

Sauvignon, 76 as Merlot and 95 samples as Carménère. For later reference, Table 1

shows a list of the nine anthocyanins used in the present paper. A brief exploratory

analysis of the data uncovered some differences in the anthocyanin log-proportions

across the three grape varieties, and correlations between the nine anthocyanins. These

observations support our choice of using the available measurements for discrimination

purposes under a multivariate approach, as it would not be reasonable to consider nine

separate univariate response models to deal with these data. The multivariate extension

we discuss next is thus relevant for the current classification problem.

3 Model

We present next the model, discussing some of its properties and implementation issues.

The full MCMC details can be found in the Appendix.

3.1 Classification Using Multivariate Bayesian Classifier

We assume a classification problem featuring multivariate response observations, and a

training dataset comprising n units {(yi, xi, gi), i = 1, ..., n}. Here yi = (yi1, ..., yip)
′ ∈

Rp represents the observed response vector for the ith unit, xi = (xi1, ..., xiq)
′

is the

vector of covariates for the ith unit and gi denotes the known group label for the ith
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unit, gi ∈ {1, 2, ..., g}. Let yn = (y1, ..., yn, x1, ..., xn, g1, ..., gn) denote the complete

data. We adopt a predictive approach for classification. Therefore, we assume an

observed data vector yn+1 = (yn+1, xn+1) for a future unit, for which the corresponding

label gn+1 is unknown. The primary inferential target is gn+1, i.e. we are interested

in estimating {p(gn+1 = k|yn, yn+1) : k = 1, . . . , g}. Following De la Cruz-Meśıa and

Quintana (2007), we consider an augmented model with marginal prior P (gi = k) = πk

for k = 1, . . . , g. For instance, the πk probabilities could be taken as the empirical

group proportions.

Let θ denote the vector of all possible parameters and hyperparameters. The clas-

sification probabilities are obtained by weighting the posterior conditional group prob-

abilities given θ with respect to the posterior distribution p(θ|yn). Concretely, the

classification probability that a new unit yn+1 belongs to the kth group is

P (gn+1 = k|yn+1, y
n) =

∫
p(gn+1 = k, yn+1, y

n, θ)

p(yn+1, yn)
dθ

=

∫
p(gn+1 = k|yn+1, y

n, θ)p(yn+1, y
n, θ)

p(yn+1, yn)
dθ

=

∫
p(gn+1 = k|yn+1, y

n, θ)p(θ|yn+1, y
n)dθ

=

∫
p(gn+1 = k|yn+1, θ)p(θ|yn+1, y

n)dθ

∝
∫

p(gn+1 = k|yn+1, θ)p(θ|yn)dθ

=

∫
πkp(yn+1|θk)∑g
l=1 πlp(yn+1|θl)

p(θ|yn)dθ. (1)

See further details in De la Cruz-Meśıa and Quintana (2007). In practice, direct an-

alytical evaluation of (1) is impossible so we resort to posterior simulation methods.
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Assuming for now the availability of a sample {θ(c), c = 1, ..., C} from the posterior

distribution p(θ | yn) (we discuss methods for this later in Section 3.2 and in the Ap-

pendix), we approximate (1) by means of (De la Cruz-Meśıa and Quintana; 2007)

P (gn+1 = k|yn+1, y
n) ≈ 1

C

C∑
c=1

πkp(yn+1|θ(c)
k )∑

l πlp(yn+1|θ(c)
l )

. (2)

We propose classifying an existing unit, i, and a future one, n + 1, using

ĝi = arg max
k

P (gi = k|yn) and ĝn+1 = arg max
k

P (gn+1 = k|yn, yn+1). (3)

In other words, the unit is classified in the group for which the highest posterior proba-

bility is attained, thus minimizing the expected misclassification rate. This is actually

the Bayes rule under the zero-one loss function, as discussed in Hastie et al. (2001).

3.2 A General multivariate Bayesian Linear Model for Grape Variety Au-

thentication

In practice, the authentication problem can be solved by computing the probability

that the product complies with its label description. We propose to do it using the

classification approach discussed in Section 3.1. To do so, we need a probability model

that adequately accounts for all the problem-specific features. We now describe a linear

mixed model that is useful for the classification of grape varieties.

We assume that the ith response vector is related to the covariates in a linear way.

Furthermore, we assume that there are fixed and random effects in the model. The

model for the ith unit in the kth group (grape variety) is thus given by

yk
i = Bxk

i + Uzk
i + εk

i , i = 1, . . . , n k = 1, . . . , g (4)
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where yk
i is the p-dimensional response vector for the kth group, xk

i is the corresponding

q-dimensional covariate vector of fixed effects, and zk
i is the r-dimensional vector of

covariates for the random effects. Also, B is a p× q matrix of regression coefficients for

the fixed effects, which we synthetically write as

B = [β1, β2, ..., βq]

where β1, ..., βq are p × 1 column vectors. In addition, U is a p × r matrix of random

effects which we write as

U = [U1, U2, ..., Ur]

where U1, ..., Ur are p× 1 column vectors. Finally εk
i is the p-dimensional error vector.

The formulation of our model is described next. For the top model (4) we assume

εk
i to be independent with

εk
i ∼ Np(0, Σk), i = 1, . . . , n, k = 1, . . . , g. (5)

As is usual in this context, we assume prior independence for all parameters. The prior

distributions for matrices B and U are assumed to be independent by columns, that is

β1, . . . , βk and U1, . . . , Ur are mutually independent, with distributions given by

βj ∼ Np(β0j, Λ0), j = 1, . . . , q (6)

U1, . . . , Ur ∼ Np(0, S) (7)

The prior distribution for the variance-covariance matrices Σk, k = 1, . . . , g and S are
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given by

Σ1, . . . , Σg ∼ IW (Q0, ν0) (8)

S ∼ IW (K0, m0) (9)

We complete the Bayesian formulation of model (4) by specifying the prior for hyper-

parameters β01, . . . , β0q and Λ0 as

β01, . . . , β0q ∼ Np(α0, τ0) (10)

Λ0 ∼ IW (L0, t0). (11)

The full conditional posterior distributions for the fixed and random effects are nor-

mal. The variance-covariance matrices Σ1, . . . , Σg and S have full conditional posterior

distributions of inverse Wishart type. Finally, the full conditional distribution for hy-

perparameters Λ0 and β01, . . . , β0q are inverse Wishart and Normal, respectively. Details

about the complete set of full conditional distributions are given in the Appendix.

3.3 Application to the Wine Dataset

In our application, we have that n = 399, g = 3, with gi = 1, gi = 2 and gi = 3 indicating

Cabernet Sauvignon, Merlot and Carménère, respectively. The label gi in our example

corresponds to the variety declared by the producer for each wine sample. This is an

important clarification. See the discussion below. We assume that gi, i = 1, . . . , n are

known and gn+1 is unknown, which corresponds to the label of a new sample wine for

which we want to verify its authenticity.

We implemented three variations of the general model described in Section 3.2:
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Model 1: This model has only fixed effects and assumes a common covariance matrix

Σ for the three grape varieties. In this model we set d = 11, p = 9 and the design

vector xi = (xi1, . . . , xi11)
t is given by xi1, xi2 and xi3, each one assuming the

values 1 or 0 depending on whether the ith wine sample corresponds to Carbernet

Sauvignon, Merlot or Carménère, respectively. We code xi4 as assuming the values

1, . . . , 4, depending on whether the year of harvest was 2001, 2002, 2003 or 2004

respectively. This allows us, among other things, to incorporate new data for

2005 that may potentially become available, without having to modify the model

if a new sample of harvest 2005, for example, is classified. In such case we could

simply code the year of harvest 2005 as xi4 = 5. We set xi5 = 1 if the ith sample

comes from the Aconcagua valley and 0 otherwise. We define xi6, . . . , xi11 in the

same way, to represent samples of the Maipo, Rapel, Curicó, Maule, Itata and

B́ıo-B́ıo valleys, respectively.

Model 2: This model has both, fixed and random effects and assumes a common

covariance matrix Σ for the three grape varieties. In this model we take d = 4, p =

9, and r = 7. The design vector for fixed effects is given by xi = (xi1, xi2, xi3, xi4)

where its components were defined exactly as in Model 1. The design vector for

the random effects zi = (zi1, . . . , zi7) represents the valley, where zi1 = 1 if the ith

sample comes from the Aconcagua valley and 0 otherwise. We define zi2, . . . , zi7 in

the same way, to represent samples of the Maipo, Rapel, Curicó, Maule, Itata and

B́ıo-B́ıo valleys, respectively. By definition of the zi matrices, U1,. . . ,U7 represent

valley-specific random effects and we allow samples that come from the same

valleys to be correlated.

Model 3: This model has fixed and random effects and grape variety-specific covari-
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ance matrices, Σ1, Σ2 and Σ3. Here, d = 4, p = 9, r = 7, and the design vector

for random and fixed effects are the same as in Model 2. The only difference is

that we order the data in blocks so we can separate the roles of Σ1, Σ2 and Σ3.

The value of the hyperparameters in (8) - (11) for model 1 were taken as α0 =

(0, 0, 0, 0, 0, 0, 0, 0, 0)t, τ0 = 1000I9, Q0 = I9, L0 = I9, ν0 = 11 and t0 = 11. For models

2 and 3 we need the additional choices K0 = I9 and m0 = 11. The prior means for Σ

and S were assumed to be the identity matrix. For the random effects U , we assumed

a prior centered at 0, with identity covariance matrix. The selected hyperparameter

values imply proper but vague prior distributions, representing the lack of genuine prior

information on the parameters.

The Gibbs sampling algorithm was implemented in a computer program written in

FORTRAN. We generated 1,000,000 iterations. After 10,000 iterations, samples were

collected at a spacing of 990 iterations, to obtain independent samples. Finally we

totaled C = 1, 000 samples for calculating posterior quantities of interest. The average

time used to run each of the last models in a standard PC (Intel Core Duo CPU 2.4

Ghz and 2.0 Gb RAM) was 8 hours.

4 Results

To evaluate model adequacy and to select among the three models in Section 3.3 we

use two model selection criteria, the Conditional Predictive Ordinates (CPOi) (Chen

et al.; 2000) and the Deviance Information Criterion (DIC) (Spiegelhalter et al.; 2002).

CPOi is a useful quantity for model checking, since it is based on how much the ith

observation supports the model. Large CPOi values indicate a good fit. DIC is an

information criterion that was proposed to select Bayesian hierarchical models, where
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models with smaller values of DIC are preferred. Table 2 shows the values of DIC and∑n
i=1 CPOi for the three models implemented. Based on both criterion, we select model

2. This suggests that for this particular case of wine data, a model with both, fixed and

random effects, is appropriate and that introducing grape variety-specific covariance

matrices seems unnecessary. Therefore, in what follows we restrict ourselves to model

2.

[Table 2 here]

Figure 1 shows the posterior distributions of β1, β2 and β3. We clearly see dif-

ferences across grape varieties for all the anthocyanins. Our results thus support the

standard practice of differentiating grape varieties by considering their chemical prop-

erties. For example, DP presents the same log-proportions between Carménère and

Cabernet Sauvignon, but they differ for Merlot. In terms of classification, the most

informative anthocyanins are PEAC, PECU and MVCU because they yield differences

in their proportions between the three grape varieties. This can then be a key element

in the classification effort.

[Figure 1 here]

Figure 2 presents the posterior distribution of U1, . . . , U7. We see that most of the

anthocyanins show differences between valleys, although these are very small in the

case of MV, the most abundant anthocyanine in most red wine varieties. For MVAC

the Itata and B́ıo-B́ıo valleys behave differently than the rest. The last result was to

be expected because the B́ıo-B́ıo and Itata valleys have special weather conditions due

to their southern geographic location, which implies substantially rainier conditions

throughout the year, and generally cooler climate than the northern valleys.

[Figure 2 here]

Table 3 shows the classification results. The total error was 3.26%. We note here
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that von Baer et al. (2007) quoted an error of 4.22% for the same dataset using classical

methods of discrimination. The major error in Table 3 is observed for Merlot, whereas

for the other varieties the error was very low (0.4 to 2 %). The high error obtained by

Merlot with the same dataset was explained by von Baer et al. (2007) as follows: Some

years ago, Carménère, which in other countries disappeared due to phylloxera, was

rediscovered in Chile. Formerly, all vineyards planted with this grape variety in Chile

were declared as Merlot. Hinrichsen et al. (2001) using SSR DNA markers to confirm the

varietal identity, found that from a total of 93 vines of five Chilean vineyards, originally

planted as Merlot, four vines matched Carménère. This leads to the conclusion that at

the time of collecting wine samples, those vineyards declared as Carménère are correctly

identified with high probability, but certain percentage of vineyards declared as Merlot,

still correspond to Carménère.

[Table 3 here]

It is well known that error rates obtained from applying the classification rule to the

same data used to derive it, tend to be overly optimistic and biased. Several methods

are available to solve this problem. For moderately large datasets, we could consider a

series of random partitions of the data into two components, one reserved for deriving

the classification rule (the training sample) and the other to assessing this rule (the test

sample). Under this method, the estimated error rate is the average error rate over all

such partitions. For smaller datasets a cross-validation (CV) technique can be used to

compensate for the lack of data, which is the road we follow here. Table 3 shows the

classification obtained by applying both, the classifier to the same data from which it

was computed, and using a leave-one-out CV approach. The latter values are within

parentheses. The error rate of 4.01% obtained with leave-one-out CV approach is still

quite good when compared to the validated error of 5.3% obtained by von Baer et al.

14



(2005) with classical methods.

5 Discussion

This paper proposes a general framework for the classification of multivariate obser-

vations from g groups. The underlying models in each group or population are given

by linear multivariate models with fixed and random effects. The proposed approach

allows to introduce covariates to model the mean responses. This is found to improve

the classification when compared to linear or quadratic discriminant analysis, the most

popular methods for food authentication. But the proposed method could be used in

any situation where the aim is to classify subjects or units into g groups, on the basis

of multiple responses as well as covariates.

This approach is particularly appropriate for verifying the authenticity of bever-

ages and food, as it gives us a method to estimate the probability that the food or

beverages comply with the corresponding label description. In most cases, the data

collected for authentication purposes have a multivariate structure, because more than

one attribute is typically measured by unit sample. As a result, these measurements are

not independent and it would not be appropriate to treat them in an univariate way.

The proposed multivariate extension allows us to model the multivariate structure in a

simple way. For the specific data considered here, we used information about chemical

markers which are intrinsic characteristics of the food or beverages that we want to

authenticate. In this context, the approach we have presented solves one important

problem, as it allows to verify the authenticity of some exports that are subject to

heavy regulations prior to admission to the country of destination.

The mixed-effects linear model considered here is quite general and admits several

special cases. We compared three of these cases, selecting one of them for the final
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analysis. One interesting feature of the selected model is that the assumptions on

random effects permit us to consider correlation between wine samples from the same

valley. This is a reasonable assumption, because the valleys considered here have wide

latitudinal variations, and these variations imply different weather and soil conditions.

In our example, we illustrated that anthocyanin profiles are very useful in the process

of classifying red wines. Other chemical markers like acid or flavonol concentrations

can be used for the same purpose, but we need more research about it. Incorporating

information about those markers into the model is a subject currently under study.
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6 Appendix MCMC

We list all the full conditional distributions below. The specific derivation details are

straightforward and therefore omitted. For fixed effect parameters we have that:

βj|other parameters and data ∼ Np(β̃j, Vj),
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where

β̃j =Vj[

g∑
k=1

{Σ−1
k (

nk∑
i=1

{xk
ijy

k
i − xk

ijx
k
il1

βl1 − · · · − xk
ijx

k
ilqβlq − xk

ijz
k
i1U1 − xk

ijz
k
i2U2

− · · · − xk
ijz

k
irUr})}+ Λ−1

0 β0j],

and Vj = [
∑g

k=1{Σ
−1
k

∑nk

i=1(x
k
ij)

2}+ Λ−1
0 ]−1, where (l1, l2, ..., lq) 6= j for j = 1, ..., q. 1

For the random effect parameters, the full conditional distributions are as follows:

Uj|other parameters and data ∼ Np(Ũj, Wj),

where

Ũj = W j[

g∑
k=1

{Σ−1
k (

nk∑
i=1

{zk
ijy

k
i − zk

ijx
k
i1β1 − zk

ijx
k
i2β2 − · · · − zk

ijx
k
iqβq − zk

ijz
k
il1

Ul1

− · · · − zk
ijz

k
ilrUlr})}],

and Wj = [
∑g

k=1{Σ
−1
k

∑nk

i=1(z
k
ij)

2}+ S−1]−1, for (l1, l2, ..., lr) 6= j and j = 1, ..., r.

For the covariance matrices Σ1, . . . , Σg the full conditionals are given by

Σk|other parameters and data ∼ IW (Hk, mk),

1Chequear! Cambié l1 por l1, etc. en todas partes.
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where

Hk =

nk∑
i=1

{(yk
i − xk

i1β1 − xk
i2β2 − · · · − xk

iqβq − zk
i1U1 − zk

i2U2 − · · · − zk
irUr)

× (yk
i − xk

i1β1 − xk
i2β2 − · · · − xk

iqβq − zk
i1U1 − zk

i2U2 − · · · − zk
irUr)

t}+ Q0,

and mk = nk + ν0 for k = 1, . . . , g.

For S we get:

S|other parameters and data ∼ IW (J, l),

where J =
∑r

j=1 UjU
t
j + K0 and l = m0 + r.

Next, for the hyperparameters β01, . . . , β0q we have:

β0j|other parameters and data ∼ Np(β̃0j, D0),

where β̃0j = D0[Λ
−1
0 βj + τ0α0], for j = 1, . . . , q and D0 = [Λ−1

0 + τ−1
0 ]−1.

Finally, the full conditional distribution for hyperparameter Λ0 is given by

Λ0|other parameters and data ∼ IW (E, d),

where E =
∑q

j=1(βj − β0j)(βj − β0j)
t + L0 and d = q + t0.
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Figure 1. Posterior distribution of β1, β2 and β3. For each of the 9 available

anthocyanins, the solid line represents β1 regression coefficients for Cabernet Sauvignon,

the dashed line represents β2 coefficients for Merlot, and the dotted line represents β3

coefficients for Carménère.

Figure 2. Posterior distribution of U1,...,U7. --- Aconcagua, --- Maipo, --- Rapel,

--- Curicó, --- Maule, --- Itata, --- B́ıo-B́ıo.
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Anthocyanin Abbreviation
delphinidin-3-glucoside DP
cyanidin-3-glucoside CY
petunidin-3-glucoside PT
peonidin-3-glucoside PE
malvidin-3-glucoside MV
peonidin-3-acetylglucoside PEAC
malvidin-3-acetylglucoside MVAC
peonidin-3-coumaroylglucoside PECU
malvidin-3-coumaroylglucoside MVCU

Table 1: Description of measured anthocyanins
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Criterion Model 1 Model 2 Model 3
CPO 193,027 193,879 103,721
DIC -3,620.175 -3,628.691 -3,268.616

Table 2: Bayesian Model Adequacy

2

2Luis: estos números para el CPO se ven muy grandes. Lo que se suele reportar es
∑n

i=1 log(CPOi),
donde cada CPOi se calcula como en Chao, Chen & Ibrahim (2000). ¿Qué calculaste exactamente?
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Variety Carménère C. Sauvignon Merlot Error
Carménère 93 (92) 1 (1) 1 (2) 2.1% (3.16%)

C. Sauvignon 1 (2) 227 (225) 0 (1) 0.44% (1.32%)
Merlot 10 (10) 0 (0) 66 (66) 13.16% (13.16%)

Total error 3.26% (4.01%)

Table 3: Misclassification rate for the three grape varieties. Values within parentheses
were obtained using leave-one-out cross-validation approach
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