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Abstract

Air quality monitoring is based on pollutants concentration levels, typically recorded in metropoli-

tan areas. These exhibit spatial and temporal dependence as well as seasonality trends, and their

analysis demands flexible and robust statistical models. Here we propose to model the measure-

ments of particulate matter, composed by atmospheric carcinogenic agents, by means of a Bayesian

nonparametric dynamic model which accommodates the dependence structures present in the data

and allows for fast and e�cient posterior computation. Lead by the need to infer the probability

of threshold crossing at arbitrary time points, crucial in contingency decision making, we apply

the model to the time-varying density estimation for a PM2.5 dataset collected in Santiago, Chile,

and analyze various other quantities of interest derived from the estimate.

Keywords: Dirichlet process, density estimation, dependent process, stick-breaking construction,

particulate matter.

1. Introduction

Human exposure to high levels of hazardous air pollutants has long been known to have adverse

health e↵ects. In October 2013, the International Agency for Research on Cancer, the specialized

cancer agency of the World Health Organization, has announced that outdoor air pollution has

been formally classified in Group 1, meaning that there is su�cient evidence that the agent is

carcinogenic to humans (see IARC, 2013). Urban air pollution is estimated to cause worldwide

9% of lung cancer deaths, 5% of cardiopulmonary deaths, 1% of respiratory infection deaths,

and to increase the risk of bladder cancer. Air pollutants associated with health risks include

sulfure dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), tropospheric ozone (O3)

and particulate matter (PM). The latter is constituted by solid and liquid particles emitted by
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combustion engines and households heating or formed as residual from other products such as

vehicles tyres, brakes and road pavement among other sources. Particulate matter was evaluated

separately by the International Agency for Research on Cancer and also classified as carcinogenic

to humans. Of particular concern, due to their harmful character, are the levels of PM10 and

PM2.5, that is particles with diameter smaller than 10 and 2.5 micrometers respectively, which can

reach the lungs through inhalation and even get to the inner organs, where they settle and become

cause of serious health problems, including death (Préndez, 1993; Dockery et al., 1992).

The awareness of the hazard caused by air pollution, and PM in particular, generates an emerg-

ing concern in overpopulated metropolitan areas around the world. As a response, environmental

authorities have set forth a series of actions to reduce and control the levels of pollutants as well as

to set policies to enact alerts propitiously. One of the main actions by environmental authorities

was the establishment of monitoring networks that collect information about concentrations of dif-

ferent pollutants. These sources of information generate spatially and temporally dependent data,

which present asymmetries, heavy tails and sometimes multi-modality. For these reasons, robust

and flexible statistical models are needed to accommodate this kind of phenomena with time-

varying distributions. Indeed, statistical models constitute a key aspect when elaborating policies

to decrease pollution levels (WHO, 2011), to set appropriate thresholds for emission contingencies

and similar actions.

The spatial and temporal nature of pollutant measurements rise many statistical questions. One

of the most important is a reliable assessment of the probability that a given pollutant concentration

is or will be above a given threshold; such information is then used by the environmental authorities

in order to call for environmental alerts and initiate policies for decreasing the pollutants levels.

Various methods have been used in order to provide answers to statistical questions in air pollution

research. These include extreme value theory (Roberts, 1979a,b; Horowitz, 1980; Smith, 1989;

Davison and Smith, 1990), multivariate analysis (Guardani et al., 2003), neural networks (Comrie,

1997; Guardani et al., 1999; Pérez et al., 2000; Ordieres et al., 2005), Poisson models (Raftery, 1989;

Achcar et al., 2008, 2010) and time series and spatial statistics (Draghicescu and Ignaccolo, 2009)

among others. However, most of these either rely on parametric assumptions, such as symmetry

or uni-modality on the pollutant level distribution or ignore the temporal dependence inherent to

pollution data. The data structure resulting from air pollutant measurements cannot be robustly

captured by time-dependent parametric models as the temporal dimension can change structural

features of the involved distributions, such as the number of modes, the shape of tails and so on.

These type of datasets instead require models with enough generality to avoid unnecessary prior

constraints in the estimation, flexibility to account for particular structures in the data, and relative

computational simplicity to avoid excessive algorithmic e↵ort in the presence of multivariate data.

In this paper we develop a flexible, nonparametric model, suitable to analyse multivariate air

pollution data which exhibit asymmetries, multi-modality and spatio-temporal dependence. We
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provide illustrations of the proposed model with an air quality analysis of the city of Santiago,

Chile, where pollution contingencies have recently been enforced as a consequence of long periods

during which the daily standard threshold of 50 µg/m3 of PM2.5 has been surpassed. The guiding

question will be to estimate the probability that a given pollutant concentration is above a given

threshold �0 at time t. However, our aim will be rather general, in that the object of inference will

be the entire shape of the time dependent data generating distribution. From the time-varying

density estimate, other quantities of interest can be derived, such as the mean functional or the

probability of exceeding an arbitrary threshold. We emphasize that, unlike other approaches such

as extreme value theory and Poisson models, the model and the estimation procedure are by

construction invariant to the choice of the threshold, which can be determined ex post.

Specifically, we propose to model the pollutant levels through a simple time measure-valued

Markov process. This will be a nonparametric mixture of parametric kernels, whose mixing measure

is a stochastic process that induces the temporal dependence. The use of a multivariate kernel

enables the model to capture the spatial dependence among the observations, and the temporal

dependence structure built in the process allows to infer and reproduce that present in the data. The

nonparametric approach avoids unrealistic constraints on the shape of the distributions involved,

guaranteeing full flexibility in the estimation procedure and the ability to capture features such

as asymmetries and multimodality. The relative simplicity of the mechanism which induces the

temporal dependence in the mixture makes our proposal particularly appealing for these type of

datasets. Unlike similar approaches based on dependent random probability measures, the proposal

finds a good trade-o↵ between generality and ease of implementation, in that the simplicity of

the induced temporal dependence, together with usual techniques for dealing with the infinite

dimensionality of the model, enables to design a fast and e�cient algorithm for the posterior

computation. Futhermore, the model allows to range along all degrees between fully correlated

and incorrelated adjacent probability measures in the collection, thus enabling the researcher to

calibrate the use of the procedure for di↵erent frameworks.

The paper is organized as follows. Section 2 presents the methodology we introduce for the

analysis. After briefly reviewing some general background notions about Bayesian nonparametric

density estimation, we develop the model, which falls into the class of dependent Dirichlet process

mixtures. We discuss its properties and outline the strategy for posterior computation. In Section

3, we illustrate the performance of the proposed model with a simulated data set, comparing it

also with a spline regression alternative. In Section 4, we apply the model to the air quality

analysis on a PM2.5 dataset collected in Santiago, Chile. The results include estimation of the

time-varying density for a four-dimensional spatially correlated time series for the PM2.5 levels

recorded in di↵erent monitoring stations in the metropolitan area, together with other quantities

of interest which are derived from the estimate. Furthermore, although these are not explicitly

enforced in the model formulation, a study of the seasonality trends for one monitoring location
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and the probability of exceeding an arbitrary threshold in single days of the year are also derived

as a byproduct.

2. The model

After collecting some considerations on the density estimation problem from a Bayesian stand-

point, we present a model for studying the air pollution data with temporal and spatial dependence.

The proposed model falls in the realm of Bayesian nonparametric dependent models, and is tailored

to multivariate data which exhibit this type of dependence. Since we aim at the entire shape of

the time-varying distribution, from which other quantities of interest can be derived, such type of

data structure requires a delicate tradeo↵ between modeling flexibility and ease of implementation,

which is the main goal we pursue from a methodological point of view.

2.1. Bayesian nonparametric dependent density estimation

Bayesian nonparametric methods have provided a very flexible and e�cient way to carry out

density estimation. Starting from the seminal contribution of Lo (1984), a stream of literature has

flourished on one of the most used and celebrated models in the discipline: the Dirichlet process

mixture model. This assumes the observations come from the random density

f

P

(y) =

Z

⇥

K(y | ✓)P (d✓), y 2 S,

where K is a probability kernel density and P is a Dirichlet process (Ferguson, 1973, 1974). The

latter admits the following so called stick-breaking representation (Sethuraman, 1994)

P (B) =
1X

j=1

!

j

�

✓j (B), B 2 B(⇥), (1)

where the !

j

’s are weights constructed as

!1 = v1, !

j

= v

j

Y

l<j

(1� v

l

), (2)

where v

j

iid⇠ Beta(1,M), M > 0, independent of ✓

j

iid⇠ F0, F0 is a nonatomic distribution on

(⇥,B(⇥)) and �

✓

(·) a point mass at ✓.

As the attention of the researchers, aided by the power of computers, progressively shifts towards

datasets of big size or with unconventional structures, new developments are called for. In many

applications, for example, it is of interest to study changes in the distribution of the response

y 2 S as a function of predictors x 2 X , with X the sample space for the predictors. MacEachern

(1999) and MacEachern (2000) proposed the use of predictor-dependent collections of distributions

through the use of mixture models. This entails specifying a prior distribution for the collection

of random probability measures indexed by the predictors. Following the representation in (1),
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MacEachern proposed to construct a collection of dependent random probability measures {P
x

, x 2

X} as

P

x

(B) =
1X

j=1

!

j

(x)�
✓j(x)(B), B 2 B(⇥) (3)

where the weights !
j

and the atoms ✓
j

are allowed to depend on the predictor value x 2 X . The

dependent Dirichlet process (DDP) corresponds to the case where marginally P

x

is a Dirichlet

Process. DDPs with fixed weights !

j

(x) ⌘ !

j

have been successfully applied to the analysis of

variance (De Iorio et al., 2004), spatial modeling (Gelfand et al., 2005), classification (De la Cruz

et al., 2007b; Gutiérrez and Quintana, 2011) among others. When the space X = T indexes

time, perhaps the first contribution can be traced back to Feigin and Tweedie (1989), where a

Markov chain with DP marginals and associated linear functionals are studied. Subsequently, other

proposals, mainly based on the ideas in MacEachern (1999), have been introduced: among others,

Dunson (2006) assumes Dirichlet distributed innovations in an autoregression setting; Dunson et al.

(2007), Gri�n and Steel (2006), Dunson and Park (2008), Rodriguez and Dunson (2011) and Arbel

et al. (2014) develop DDPs where predictor dependence is introduced in the weights; Caron et al.

(2007) and Caron et al. (2008) propose a time-varying DP mixture with reweighing and movement

of atoms; Rodriguez and ter Horst (2008) induce the dependence in time only via the atoms.

In the present framework, the data are assumed to be generated from the random density

function f

Pt : S⇥ T �! R+ given by

f

Pt(y) =

Z

⇥

K(y | ✓)P
t

(d✓), y 2 S and t 2 T (4)

Here S is the sample space, K(· | ✓) is a, possibly multivariate, kernel on (S,B(S)), ✓ 2 ⇥ ⇢ Rd and

P = {P
t

, t 2 T } is a collection of dependent random probability measures on (⇥,B(⇥)). Finally,

T = (0, T ] or T = {1, 2, . . . , T}, T < 1, indexing the times at which the observation vectors

are collected. With an appropriate specification of the kernel K and the prior distribution for P ,

virtually any shape for f
P

= {f
Pt , t 2 T } can be recovered from (4). Furthermore, other quantities

of interest can be easily estimated given an estimate of f
Pt . We will be particularly interested in

the mean functional

⌘

t

=

Z

S
yf

Pt(dy), (5)

and the functional which measures the probability of exceeding a fixed threshold �0

E
t

(�0) := P
t

(y > �0) =

Z 1

�0

f

Pt(y)dy. (6)

With the goal of fruitfully combining generality and computational ease, in the next section we

will propose a simple dependent Dirichlet process which is analytically tractable and avoids the

use of complex simulation algorithms, providing a straightforward way for exploring the posterior

quantities of interest. Such model is tailored to use it with multivariate data which show depen-

dence with respect to both time and space, making it particularly appropriate in the research on

environmental pollution and related fields.
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2.2. A Simple Dependent Dirichlet Process

Dependent processes with fixed weights can lack enough modeling flexibility. On the other

hand, letting both the weights and the atoms vary could result in a burdensome computation.

Here then we concentrate on models with varying weights and fixed atoms. Such choice proves to

be e↵ective on the practical side, as it guarantees fast computation while preserving the ability to

capture the data generating distribution.

Consider then

P

t

=
1X

j=1

w

j

(t)�
✓j , ✓

j

iid⇠ F0, t 2 T , (7)

where
P1

j=1 wj

(t) = 1 almost surely for all t 2 T and F0 is a non atomic probability measure on

⇥. Due to the applications considered in Section 3, we will concentrate on the discrete time case,

that is when T = {1, 2, . . . , T}, T < 1. A straightforward possible extension to the continuous

time case T = (0, T ] is discussed at the end this section.

Aiming at preserving the stick-breaking structure (2) at the marginal level, let w(·) = {w(t) =

(w1(t), w2(t), . . .), t � 0} in (7) be a realization of W (·) = {W (t) = (W1(t),W2(t), . . .), t � 0},

where

W1(t) = V1(t), W

j

(t) = V

j

(t)
Y

l<j

(1� V

l

(t)). (8)

Each component V (·) = {V
j

(t), t � 0} is a Markov chain defined as follows:

V

j

(t1) ⇠ Beta(1,M), M > 0 (9)

V

j

(t
k

) | V
j

(t
k�1) =

8
><

>:

V

j

(t
k

) ⇠ Beta(1,M) with probability �,

V

j

(t
k

) = V

j

(t
k�1) with probability 1� �,

k = 2, . . . , T,

where � 2 [0, 1].

Thus each stick-breaking component is updated at geometric times with a fresh, uncorrelated

value from the stationary distribution Beta(1,M). This construction clearly guarantees that P

t

marginally is a Dirichlet process. The extreme simplicity of the dependent process defined via (9)

leads to analytically tractable posterior updates, see Section 2.3. In addition, the parameter �

controls the autocorrelation of each weight component, and thus indirectly the autocorrelation of

the whole process P = {P
t

, t 2 T }. When � approaches 0, the stick-breaking components tend

to spend more and more time on the explored values, whereas when � goes to 1, their trajectory

approaches a Beta noise on the interval (0, 1). Figure 1 shows some sample paths of V
j

(t) for

di↵erent values of �, together with the corresponding histograms of the ergodic frequencies and

the autocorrelation.

The following result, whose proof can be found in the Appendix, identifies the autocorrelation

function for P = {P
t

, t 2 T }.
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Figure 1: Sample paths, ergodic states frequencies and autocorrelation for Vj(t) with M = 3, and

� = 0.1 (top row), � = 0.5 (middle row), � = 0.9 (bottom row).

Proposition 2.1. Let P = {P
t

, t 2 T } be as above. Then

Corr(P
t

(A), P
t+s

(A)) =
(1 +M)(2 +M + (1� �)sM)

(2 +M)(1 + 2M)� (1� �)sM
.

Model (7) can be generalized to the continuous time case, by allowing the time e↵ect to enter

via the parameter �. Specifically, by setting �

t

:= exp{�↵�
t

}, where ↵ > 0 and �
t

is the

time increment among consecutive and equally spaced observations. The resulting autocorrelation

function can be easily derived as a simple extension of Proposition 2.1.

The correlation can be calibrated, to some extent, by means of the parameter �, and can be seen

to converge to (1+M)/(1+2M) as s ! 1, which thus gives a lower bound. The existence of such

bound is structural and common to all dependent processes with fixed atoms. Although this latter
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feature appears to be undesirable, it does not constitute a major inconvenience, in particular due to

the fact that it does not prevent the induced prior from having a large support. The fact that the

constructed process has full support with respect to the weak topology is implied by Theorems 1

and 3 in Barrientos et al. (2012). On the other hand, fixing the atoms in the model allows to design

faster computational schemes, which determines a sure advantage in terms of estimation e�ciency.

2.3. Algorithm for posterior inference

In order to perform posterior inference for a set of observed concentration levels of PM2.5

modelled via the simple dependent Dirichlet process (4) we resort to a Markov chain Monte Carlo

procedure. Specifically, we construct a Gibbs sampler algorithm with slice sampling steps as in

Walker (2007) to overcome the infinite-dimensionality inherent to the dependent Dirichlet process.

We consider an augmented model given by

f

Pt(y, u, s) = I(u < w

s

(t))K(y | ✓
s

), (10)

where s denotes the allocation variable of y and u is a uniform random variate on (0, w
s

).

Let us assume we observe n trajectories measured at times (t1, . . . , tT ). Such multiple-trajectory

framework will be used below in Section 3 and 4.2 in order to capture structural changes in the

shape of the distribution with respect to the temporal dimension. For i = 1, . . . , n and k = 1, . . . , T ,

denote by y

i,k

the observation of the i-th trajectory at time t

k

. Analogously, let s
i,k

and u

i,k

the

allocation and slice variables corresponding to y

i,k

. Hence, the augmented likelihood can be written

as

Lv,✓(y,u, s) =
nY

i=1

TY

k=1

I(u
i,k

< w

si,k(tk))K(y
i,k

| ✓
si,k). (11)

where v := {(v1,k, v2,k, . . .); k = 1 . . . , T} denotes the infinite collection of state-time observations

of the stick-breaking components (9), i.e. {V
j

(t
k

) = v

j,k

}, and ✓ := (✓1, ✓2, . . .) is the infinite set of

random locations sampled from a non-atomic distribution F0 with density f0.

The main variables that need to be sampled at each step of the Gibbs algorithm are {v
j,k

, ✓

j

, j =

1, 2, . . . , N}, s
i,k

and u

i,k

for i = 1, . . . , n and k = 1, . . . , T . Here, N := max
i,k

{N
i,k

} with N

i,k

being the largest integer s
i,k

for which {u
i,k

< w

si,k(tk)}, which is equivalent to find an N

i,k

such

that
P

Ni,k

=1 w

> 1� u

i,k

.

Updating the locations.

For the locations, which are random but independent of time, we obtain

⇡(✓
j

| . . .) _ f0(✓j)
Y

{i,k:si,k=j}

K(y
i,k

| ✓
j

)

as in Walker (2007). Note that, for a fixed time t, observations from di↵erent trajectories can be

allocated to di↵erent atoms. For the particular case when n = 1 as in Section 4.1 there is a single

atom and a single allocation for each time, namely the Gibbs updates are based on s

k

instead of

s

i,k

.
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Updating the weights.

To update the time-dependent weights, we need to update the stick-breaking components; to

this end, denote by p

j,k

the transition density P(V
j

(t
k

) 2 A | V
j

(t
k�1) = v

j,k�1) corresponding to

the j-th process (9). Hence, it is seen that

⇡(v
j,k

| · · · ) / {p
j,2 Beta(vj,1; 1,M) I(k = 1) + p

j,k+1pj,k I(k 6= 1, T ) + p

j,T

I(k = T )}

⇥ v

nj,k
j,k

(1� v

j,k

)mj,k (12)

where Beta(·; a, b) denotes the density of a Beta distribution with mean a/(a+ b) and

n
j,k

:=
nX

i=1

I(s
i,k

= j), m
j,k

:=
nX

i=1

I(s
i,k

> j). (13)

After applying transition (9) and arranging terms one obtains

⇡(v
j,k

| . . .) = �Mq0,k(vj,k+1) Beta(vj,k; 1 + n
j,k

,M +m
j,k

)

+ �M q1,k(vj,k+1, vj,k�1, vj,k�1) I(vj,k = v

j,k�1)

+ �M q1,k(vj,k+1, vj,k+1, vj,k+1) I(vj,k = v

j,k+1)

+ (1� �)q1,k(0, vj,k�1, vj,k�1) I(vj,k = v

j,k+1 = v

j,k�1) (14)

for k 6= 1, T and

⇡(v
j,1 | . . .) = Mq0,1(vj,2) Beta(vj,1; 1 + n

j,1,M +m
j,1) +M q1,1(vj,2, vj,2, vj,2)I(vj,1 = v

j,2)

⇡(v
j,T

| . . .) = q0,T (0)Beta(vj,T ; 1 + n
j,T

,M +m
j,T

) + q1,T (0, vj,T�1, vj,T�1) I(vj,T = v

j,T�1),

where

q0,k(v) :=
�M (1� v)M�1

B(1 + n
j,k

,M +m
j,k

)
(15)

q1,k(u, v, w) := (1� �) (1� u)M�1
v

nj,k (1� w)mj,k (16)

with B(a, b) = �(a+ b)/(�(a)�(b)).

When n = 1, the updates of the v

j,k

’s are performed with equations (14) and (15), using

n
j,k

:= I(s
k

= j), m
j,k

:= I(s
k

> j), (17)

in place of (13).

Updating the membership and slice latent variables.

The full conditional distributions for the membership and slice latent variables are given by

p(s
i,k

=  | . . .) / K(y
i,k

| ✓


)I({ : w


> u

i,k

}) (18)

and

⇡(u
i,k

| . . .) = U(u
i,k

; 0, w
si,k) (19)

respectively .
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Updating others hyper-parameters.

The total mass parameter M is updated as in Escobar and West (1995) assuming a gamma

prior Ga(a, b). Finally, for the parameter �, we assume a Beta prior such that � ⇠ Beta(�, ⌫).

The posterior distribution for � is not available in closed form, thus a Metropolis-Hasting step is

needed. We propose to use a truncated normal distribution as a proposal for �, that is, at iteration

⌧ , �⇤ ⇠ N(�⇤ | �⌧�1
, c)1[0,1]. Then set:

�

⌧ =

8
<

:
�

⇤
, with probability min(r, 1)

�

⌧�1
, otherwise

and

r =
p(�⇤ | y)/N(�⇤ | �⌧�1

, c)1[0,1]

p(�⌧�1 | y)/N(�⌧�1 | �⇤
, c)1[0,1]

. (20)

In (20), p(�⇧ | y) is given by

p(�⇧ | y) / �

⇧(��1)(1� �

⇧)(⌫�1)
n⇥TY

l=1

NX

j=1

w

⇧
j

K(y
l

| ✓
j

)

and w

⇧
j

are the weights sampled using �

⇧.

An appealing feature of the above Gibbs sampler algorithm is the updating mechanism for the

time-dependent weights (14). This is considerably simpler than those corresponding to other time-

dependent DP models, where latent processes are needed within the MCMC (see, e.g., Rodriguez

and Dunson, 2011; Mena and Ruggiero, 2015). Such simplicity is inherited from the dependence

structure induced by the Markovian process (9). Indeed, the availability of a simple transition

probability also leads to an appealing way to assess the dependence in the model, e.g. though

Proposition 2.1, which does not involve the computation of any integrals, as for other DDP models

with dependent weights. The posterior description of the weight processes is an important point

for this class of models, since it represents the key component in the time-dependence description

of the dynamic density model.

Here, it is worth emphasising that steps (18) and (19) of the above slice sampler algorithm

allow the random truncation of the stick-breaking representation to be adaptive, reducing the

possibility that the ✓’s are trapped in a particular value. Another important aspect of our proposal

is that the total mass parameter M is randomised and thus, as noted by De Blasi et al. (2015,

Remark 2), the resulting DPM model falls into the class of random probability measures where

the clustering of observations depend on both, the total number of observations and the number

of di↵erent parameter values. The model could clearly be extended, without much complication,

to Pitman-Yor dependent priors. Such development could be of interest in other scenarios where

the clustering structure of the data is considered to be particularly informative. Finally, it is

important to highlight that our proposal is specific for time-dependent density estimation, thus

it is less general than other approaches where the dependence could be placed in more general

covariate spaces, hence providing with an alternative model only for such a case.
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3. Illustration with simulated data

In this section we illustrate the use and performance of the proposed DDP model with a

simulated data set. We simulate n = 7200 observations, corresponding to 30 realisations for each

time t = 0.1, 0.2, . . . , 24, from the following model:

y(t) ⇠

8
>>>><

>>>>:

N(f(t),�2
1), for 1  t < 8,

0.3N(f(t),�2
1) + 0.7N(f(t),�2

2) for 8  t < 16,

0.5N(f(t),�2
3) + 0.5N(0.1t+ f(t),�2

3), for t � 16.

where, �2
1 = 0.04, �2

2 = 1, �2
3 = 0.09 and

f(t) = cos(t) + 2⇥ sin(t) +
t

2
�min(t, 16).

To complete the specification of the proposed DDP model, we select a Normal kernel K(y | ✓) :=

N(y | µ,�2). The centering measure for the Dirichlet process is set to be a Normal/Inverse-Gamma

distribution F0 := N(µ | µ0,�
2
µ

)IG(�2 | ↵,�). The values of the hyperparameters were set to

µ0 = 0, �2
µ

= 1000, ↵ = 1, � = 1, a = 0.5, b = 0.2, � = 2 and ⌫ = 2. These hyperparameter values

imply proper but vague distributions, in particular for µ and M . The Gibbs sampling algorithm

was implemented in R. We generated 50,000 iterations, discarded the first 20,000 as burn-in, and

thinned every 30 iterations for a total of 1,000 samples. The convergence diagnostics were performed

with the R package CODA (Plummer et al., 2006). We calculated the e↵ective sample size measure

and the Gelman and Rubin’s convergence diagnostic (Gelman and Rubin, 1992). Concerning the

former, the e↵ective sample size was 14,275 for M and 4,131 for �. The smaller e↵ective sample

size for � is expected due to the metropolis step involved in its sampling schedule. As for the

latter, Figure 10 in the Appendix shows the point estimates of the potential scale reduction factor

for the parameters M and �, which control the autocorrelation of the dependent process in (9), to

be 1.06 and 1.01 after 50,000 iterations of ten chains started at di↵erent points, with their upper

97.5% confidence limits being 1.13 and 1.01 respectively, thus providing evidence of convergence.

The other model parameters showed similar results in terms of convergence diagnostics.

With the purpose of comparing our model with an alternative, we also fitted a spline regression

model to the data. Specifically, we employed the Bayesian penalized spline regression proposed by

Crainiceanu et al. (2005), which can be seen as a mixed model with random and fixed e↵ects. The

splines coe�cients are the random e↵ects and these are penalized by controlling its variance in the

prior distribution.

Figure 2 shows the temporal evolution of the density estimate obtained with the DDP and the

spline regression model. Both models follow the non-linear trajectory of the data, but the density

is not well captured by the spline model, particularly where this becomes multimodal. Figure 3

compares the performance of the two models at selected time points, indicated in Figure 2 with

vertical dashed lines, with the black solid line being the true density, the red solid line being the
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Figure 2: Density estimation for simulated data using the DDP mixture model (left panel), and the

penalised spline regression (right panel). The density sections at times indicated by vertical dashed

lines are shown in Figure 3.

DDP estimate, with pointwise 95% credible intervals, and the green line being the spline regression

estimate. The shape of the density is well captured by the DDP model, especially in temporal

regions of multimodality, whereas the spline regression model is not flexible enough to detect and

reproduce this structural changes.

4. Application to air pollution studies

We consider two data sets, both relative to the urban area of Santiago, Chile. The first dataset

corresponds to ten years of daily observations of PM2.5 concentration levels, in µg/m3, at Parque

O’Higgins station between January 1, 2002 and December 30th, 2011, which is one of the first and

most representative stations for pollution levels monitoring in the downtown area of Santiago. The

second data set corresponds to daily observations of PM2.5 concentration levels registered between

December 30th, 2009 and December 30th, 2011 in Santiago for four di↵erent stations, located in

Parque O’Higgins, Pudahuel, La Florida and Las Condes. These stations are representative of

di↵erent levels of pollution in Santiago as both the downtown area and the suburbs are included.

Specifically, Parque O’Higgins is located in the downtown area (500 meters above sea level (m.a.s.l.))

about 1 km west of a major highway and with a tra�c of about 60,000 vehicles per day (Gramsch

et al., 2006). Pudahuel is located in the western part of the city (480 m.a.s.l.), with two major

12



Figure 3: Comparison of density estimates at the time points highlighted in Figure 2. The black solid line is

the true density, the red solid line is the DDP estimate, with pointwise 95% credible intervals, and the green

line is the spline regression estimate.

roads with about 15,000 to 20,000 circulating vehicles per day. La Florida is placed in the southern

part of the city (500 m.a.s.l.), surrounded by three major roads with tra�c of 30,000, 35,000 and

55,000 vehicles per day as reported by Gramsch et al. (2006). Finally, Las Condes is placed in the

eastern part of the city (700 m.a.s.l.) close to a road with about 15,000 vehicles per day.

4.1. Dynamic density estimation for spatially correlated PM2.5 data

We apply the dependent model developed in Section 2 for studying the air pollution data

through dynamic density estimation. We consider the PM2.5 concentrations reordered at the four

13



Station Jan-30-2010 Jan-30-2011 Jun-30-2010 Jun-30-2011

Las Condes 0.0004 0.0004 0.0023 0.0028

La Florida 0.0025 0.0029 0.0443 0.4881

Pudahuel 0.0044 0.0062 0.7536 0.7163

P. O’Higgins 0.0038 0.0037 0.4707 0.7801

Table 1: Probabilities of exceeding 50 µg/m3 in 24 hours

stations in a period of two years. Since the stations are located in the same valley, with similar

weather conditions, there is a spatial dependence among the pollution levels registered in di↵erent

stations. To complete the specification of the DDP proposed, since the support of the pollution

levels is S = [0,+1), we let K(y | ✓) = log-N4(µ,⌃), where log-N4 denotes a 4-dimensional log-

Normal distribution, whose variance-covariance matrix ⌃ models the spatial dependence among

stations. The centering measure is set to be F0 := N4(µ | µ0,⌃µ

)IW4(⌃ | ⌫, A) where, IW4 denotes

a four dimensional inverse-Wishart distribution with expected value E(⌃) = A/(⌫�3). The values

of the hyperparameters were fixed at µ0 = (0, 0, 0, 0)t, ⌃
µ

= 100I4, A = 0.01I4, ⌫ = 8, a = 0.1,

b = 0.1, � = 2 and ⌫ = 2, implying proper but vague prior distributions and representing lack of

genuine prior information about the parameters.

The Gibbs sampler algorithm was implemented in R. We generated 50,000 iterations, discarded

the first 20,000 as burn-in, and thinned every 30 iterations for a total of 1,000 samples. Figure 4

shows the posterior density estimates for the air pollution data in the four stations, where the heat

contour represents the height of the posterior probability and the solid line the mean functional.

From this figure, we can see that the model detects the change points of the data series and

accommodates the heteroscedastic behaviour of the PM2.5 concentrations.

Figure 5 shows the marginal density estimates for the four stations at four selected times:

January 30th, 2010 and January 30th 2011 (summer in the southern hemisphere); June 30th,

2010 and June 30th, 2011 (winter). The vertical dashed line indicates the threshold level of

maximum allowed concentrations in 24 hours (50 µg/m3). The results show that in summer

the distribution of PM2.5 concentration is very similar between stations and the probability of

exceeding the threshold of 50 µg/m3 negligible. In winter, the PM2.5 concentration has very

di↵erent distributions according to the location. Such di↵erences are crucial given the relative

position between the curves and the threshold. Furthermore, in winter more variability and heavy

tailedness emerge. The results in Figure 5 are in part a consequence of large emissions within the

city itself, which in turn combine with a very low ventilation due to low wind speeds and strong

inversions. The winter months (May to August) are cold with moderate rain and low wind speeds,

whereas the summer is hot and dry and the average wind speed is higher than in other months. The
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Figure 4: Temporal evolution of the density estimate for air pollution data using the DDP mixture model.

The panels show the data points (dots), the posterior density estimate (heat contour) and the mean functional

(solid line) for the four stations in the period under study, January 2010 to December 2011.
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Figure 5: Posterior marginal densities (solid lines) against fixed threshold (dashed).

posterior version of the probabilities (6) of exceeding the given threshold can be easily computed

from the model and are reported in Table 1.

Finally, Figure 6 shows the bivariate density estimates for pairs of stations on July 30th, 2011,

from which it can be observed that Las Condes and La Florida stations shows less variability

compared to Pudahuel and Parque O’Higgins. In both cases the PM2.5 concentrations show positive

correlation between stations, due to the spatial dependence captured and quantified by the model.

4.2. Seasonality study

The proposed dependent model also allows to investigate seasonality patterns. Here we are

interested in the study of the distribution of the PM2.5 levels in an average year. To this end, we split

the ten years dataset for Parque O‘Higgins station and consider every year as a separate trajectory,

so that for each day of the year we have 10 data points. To complete the specification of the DDP
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Figure 6: Bivariate density estimates on July 30th, 2011 for Las Condes and La Florida (left) and

Pudahuel and Parque O’Higgins (right).

model, for this case we select a kernel K(y | ✓) := log-N(y | µ,�2), where log-N is a univariate

log-Normal distribution. The centering measure is set to be F0 := N(µ | µ0,�
2
µ

)IG(�2 | ↵,�),

where IG(· | ↵,�) denotes the inverse gamma distribution with expected value given by �

↵�1 for

↵ > 1. The values for the hyperparameters were fixed at µ0 = 0, �2
µ

= 100, ↵ = � = 2, a = b = 1,

� = 2 and ⌫ = 2. Note that the hyper-parameters a and b, which define the prior distribution

on M , must be specified accordingly to the sample size and number of trajectories. Specifically,

having more trajectories would require a relatively smaller prior variance on the distribution of

M since more information about the local number of groups is available. The general setting of

the Gibbs sampler is analogous to that used for the previous example. The results are plotted

in Figure 7 which shows the heat contour of the density estimate and the mean functional. The

winter seasonality of the data, manifested in the heteroscedastic behaviour of the PM2.5 levels, is

captured and rendered by the estimate whose sections are more stretched density functions. This

is further highlighted in Figure 8, where the marginal density estimates for May 10th and October

15th are plotted against a fixed threshold. Here is worth noticing the change of the distributional

form when viewed at di↵erent times. In the present application, the results allow to draw inferences

on the probability of exceeding the threshold under a time-varying distribution scenario. This is

easily derived from the estimates and, for instance, it equals 0.45 on May, 11th but is negligible on

October, 15th.
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Figure 7: Density estimation for seasonality study on a single station data through several years. The

dataset is split and years considered as trajectories for pattern highlighting. The plots shows the posterior

estimate of the time-varying density (heat contour) and the mean functional (solid green line).

Elaborating on this point, and as a further illustration of the results that can be derived from

the time-varying estimate, Figure 9 plots the probability of exceeding two di↵erent thresholds for

each day of the year, namely 50 (Chilean) and 35 (US EPA) µg/m3, with red bars highlighting those

higher than 1/2. This type of information is essential for implementing local policy regulations

to contain pollution, decided upon evaluation of the sporadic versus structural occurrence of the

threshold crossing and the associated probabilities.
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Figure 8: Posterior density estimates with 95% pointwise credible intervals for May, 10th (left) and October,

15th (right). The vertical dashed line highlights the threshold 50 µg/m
3.

5. Concluding remarks

We proposed a flexible time-varying density estimation model, which is useful in univariate

and multivariate contexts. The proposal is especially designed to capture the distributional dis-

similarity, characterizing phenomena such as those encountered in air quality analysis, and at the

same time keep the computational complexity low. The guiding interest here was the assessment

of the probability that a given pollutant concentration at time t surpasses certain threshold �0.

This provides information about the number of times that such a threshold is surpassed in a time

interval of interest. A robust evaluation of these and related quantities is key to the evaluation of

air quality standards as well as the costs-benefits trade-o↵ of the polices for decreasing pollution

levels.

The results obtained from ten years of information in Parque O‘Higgins station are representa-

tive of the behavior of an average year in the downtown area of Santiago city. These are helpful for

planning new standards and to quantify the cost and benefit of the current policy. In particular, we

have found that the probability of exceeding the current Chilean standard is high between April

to August but these probabilities are smaller than 0.5. If Chile adopts the US EPA standard,

considering the current levels of PM25, there is a high probability (bigger than 0.5) of exceeding

the EPA standard in more than 100 days per year. However, a more demanding standard might

not be a realistic policy for Santiago as such will most probably come with high costs in various
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Figure 9: Probability of exceeding the thresholds 50 (left) and 35 (right) µg/m3, for each day of the year,

with probabilities higher than 1/2 highlighted in red.

sectors of society.

Moreover, the results captured from the multivariate analysis of the four stations allowed us

to understand the relationship of PM2.5 concentrations between each station. It also allowed us

to make informative comparisons between stations. We have found for example, that Pudahuel

station almost always showed the highest levels of PM2.5 concentrations and the lowest levels were

in Las Condes station.

We have illustrated the model in some particular situations, e.g. in the multivariate example

we used the information of p = 4 stations. However, higher dimensional scenarios can be easily

incorporated. In particular, in high dimensions, the variance-covariance matrix ⌃ of the log-Normal

kernel could be simplified and restricted to depend on a few parameters as a function of the distance

between stations, that is, a spatial covariance function can be used in order to reduce the computing

time and allow for spatial prediction.
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Proof of Proposition 1
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Since the number of atoms renewals follows a Bernoulli process with parameter �, we have
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Setting s to be zero in (22), we have that
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