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Abstract

Food and beverage authentication is the process by which food or beverages

are verified as complying with their label descriptions (Winterhalter; 2007). A

common way to deal with an authentication process is to measure attributes such

as groups of chemical compounds on samples of food, and then use these as in-

put for a classification method. In many applications there may be several types

of measurable attributes. An important problem thus consists of determining

which of these would provide the best information, in the sense of achieving the

highest possible classification accuracy at low cost. We approach the problem

under a decision theoretic strategy, by framing it as the selection of an optimal

test (Geisser and Johnson; 1992) or as the optimal dichotomization of screening

tests variables (Wang and Geisser; 2005), where the “test” is defined through a

classification model applied to different groups of chemical compounds. The pro-

posed methodology is motivated by data consisting of measurements of nineteen
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chemical compounds (Anthocyanins, Organic Acids and Flavonols) on samples of

Chilean red wines. The main goal is to determine the combination of chemical

compounds that provides the best information for authentication of wine vari-

eties, considering the losses associated to wrong decisions and the cost of the

chemical analysis. The proposed methodology performs well on simulated data,

where the best combination of responses is known beforehand.
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1 Introduction

Authentication of food and beverages is the process by which food or beverages are

verified to match their label description (Winterhalter; 2007). Authentication problems

are typically treated from the viewpoint of classification (Brown et al.; 1999; Dean et al.;

2006; Toher et al.; 2007; Gutiérrez et al.; 2011). The accuracy of a classification model

used for authentication depends on the available information. An important issue in

this process is to determine what chemical compounds should be analyzed to verify

that a given food product complies with its label description. For example, to verify

the authenticity of tea varieties and products, different groups of chemical compounds

like Catechins, total Phenolics, Theaflavins or caffeine, have been proposed (Engelhardt;

2007).

Motivated by a dataset concerning samples of red wines from different varieties and

origins (Gutiérrez et al.; 2011), in this paper we address the problem of selecting the

compounds that give the best performance. By this we mean that the cost of analyzing

the compounds should be low and the accuracy of results good. From a Bayesian

viewpoint this can be seen as a decision problem (Berger; 1985). A similar problem

arises in a biomedical context, when it is necessary to choose between two screening
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tests. A possible solution involves the definition of a loss function that combines the

penalty associated to a wrong decision with the cost of each test. See for example

Geisser and Johnson (1992). A related approach involves the optimal dichotomization

of screening test variables, as in e.g., Wang and Geisser (2005). See below and Section 2

for a discussion of both methods.

We adapt the methods in Geisser and Johnson (1992) and in Wang and Geisser

(2005) to the optimal selection of information for the authentication process. We as-

sume that various types of chemical compounds can be potentially measured, and that

additional information leads to increased classification accuracy, but at a higher cost.

Our “test” is a multivariate classification model (Gutiérrez and Quintana; 2011) that

can be applied to the different groups of chemical compounds. We consider two popula-

tions: one where food samples comply with their label description and the other where

they do not. For simplicity, we refer to these as populations having characteristics U

or U c, respectively. The method by Geisser and Johnson (1992) considers the problem

of optimally deciding whether a certain characteristic is present, based on one or two

screening tests. The authors discuss the relative merits of giving either one or two

tests, including the order in which they might be given, as well as their costs. For this

method, the input consists of the results of a screening test, e.g. the ELISA test for

presence or absence of AIDS. In our case we take the input as the results coming from

the classification model, namely, the posterior probability that the sample has charac-

teristic U . To do so, it is necessary to select a threshold for the posterior probability

that a given individual is assigned to characteristics U or U c. On the other hand, the

method by Wang and Geisser (2005) considers the problem of finding a most favorable

dichotomizer, that is, a cut-off value or threshold for which optimal test performance is

obtained. This is so because the accuracy of the screening test often depends on the di-
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chotomization of the test outcome variable. Determination of the optimal dichotomizer

is considered under a decision-theoretic Bayesian approach. For this method, the in-

put consists of the outcome test variable values, e.g. in AIDS screening, an ELISA

test measuring the level of certain antigens in the blood for ascertaining the presence

of the human immunodeficiency virus (HIV) antibodies, and a cut-off value is chosen

for dichotomizing the screening outcomes, to indicate the presence or absence of the

antibodies (Wittes; 1987). When adapting the Wang and Geisser (2005) method to our

case, we take the log-posterior predictive density for a new sample as input. It will be

argued that the expected loss function depends on this value, so that we simply proceed

to find an “optimal” dichotomizer using minimization techniques.

In our classification approach, we model a response vector y ∈ Rp as function of

covariates x ∈ Rq. We deal specifically with the case where the dimension p of y can

be changed based on the available information, while the dimension q of x remains

constant. This differs from most traditional approaches, where the response vector di-

mension remains constant and the focus is on covariate selection. Furthermore, we take

into account the cost cj required to obtain information, and so it is natural to consider

the problem of optimally selecting information. The basic idea can be summarized as

follows. Let j = 1, 2, . . . index the different combinations of chemical compounds to be

considered, yielding a response vector y of dimension pj to which we fit a classification

model Mpj . We also define a loss function that balances the worth of correctly clas-

sifying these samples, with the cost cj required to measure the chemical compounds.

The optimal group of compounds to use is then determined as the one minimizing the

expected loss function, i.e. the one giving the best classification results at the lowest

possible cost. Calculations are based on adapted versions of the methods by Geisser

and Johnson (1992) and Wang and Geisser (2005). We compare these methods and
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show that they ultimately lead to the same decisions for our problem.

The rest of the paper is organized as follows. In section 2 we introduce the ideas

and concepts for defining a loss function and the two approaches for estimating the

expected loss. In Section 3 we apply the proposed methodology to a simulated data

set. We also briefly describe a classification model that we have found to be particularly

useful for authentication in this context (Gutiérrez and Quintana; 2011). In Section 4

we describe the motivating wine dataset, which includes measurements of nineteen

chemical compounds: Anthocyanins, Organic Acids and Flavonols. We implement and

compare the two methods for optimal information selection, considering all possible

combinations of groups of compounds that can be used. We conclude in section 5,

where the results are compared, and a final discussion of the proposed methodology is

given.

2 Methodology

2.1 A decision-theoretic approach to find an optimal information subset

We assume a classification approach for which a training dataset concerning n exper-

imental units {(yi, xi, gi)}, i = 1, . . . , n is available. Here, yi = (yi1, . . . , yip)
′ ∈ Rp

is the observed response vector for the ith unit, and xi = (xi1, . . . , xiq) and gi ∈

E = {1, . . . ,m} denote the corresponding covariate vector and known group label,

respectively. Let yn = (y1, . . . , yn, x1, . . . , xn, g1, . . . , gn) denote the complete data. Let

yn+1 = (yn+1, xn+1) be the observed data vector for a future unit, for which the cor-

responding label gn+1 is unknown. We adopt a predictive approach for classification,

so that the focus is on inference for gn+1. Assume a partition of E as E = U
⋃
U c,

where U = {k}, k ∈ E and U c = {j ∈ E | j 6= k}. Using the above setup, we consider
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two sub-populations: one consists of those units that comply with its label description

(which will be referred to as having characteristic U), and the other formed by those

units that do not, which we denote as U c. In this context, there are two possible ac-

tions, gn+1 = U , and gn+1 = U c, denoted respectively by A and Ac. Here, U and U c

define a partition of the set E as defined above. In other words, our actions are based

on classification predictions that result from a certain model. Concretely, assume now

that we have a generic hierarchical model, denoted by M, for the available responses,

covariates and group labels, of the form

yi | θi, xi ∼ p(yi | θi, xi), θi ∼ G(θi | φ). (1)

In simple words, the data vector yi for the ith sampling unit is assumed to be sampled

from a probability model parameterized by a vector θi, in turn modeled by a distribution

G that depends on hyperparameters φ. Our main motivation and focus is on the

problem of computing predictions when the dimension p of yi can be changed based

on the available information, and on the cost required to obtain that information. For

example, in our application, p = 9 when we choose to use Anthocyanins, p = 4 when we

use the Organic Acids, p = 6 for Flavonols, and p = 19 when we use all of the available

compounds. See a full list of the mentioned groups of chemical compounds in the

Appendix. In all cases the dimension of xi remains constant, so the covariates are the

same for all models. For the wine data set, the covariates are the grape variety and valley

for all models. Denote byMpj a model of the form (1), with a corresponding response

vector yi ∈ Rpj , j = 1, 2, . . .. We assume there is a cost cj associated with model Mpj ,

and losses in making wrong decisions. Selecting a particular modelMpj implies selecting

the compounds or combinations of them that yield the best performance. By this we
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mean that the cost cj of determining the compounds should be low and the accuracy

of the classification predictions should be good. In our case, we have information on all

the different compounds, but we shall take the perspective of identifying the groups or

combinations thereof that are most useful for classification. The idea is that, if in the

future a producer needs to verify, for example, whether a sample of wine is Cabernet

Sauvignon or not, then the analyst will not need to measure all compounds included

in the current dataset, but only those providing the best classification for this grape

variety at low cost. Therefore we propose a solution that implies the definition of a loss

function that combines the penalty associated to a wrong decision with the cost cj of

collecting the data for each model Mpj .

In the case of actions A and Ac and states U and U c, a useful loss function is given

in Table 1. For example, the loss of deciding action A is lAU when the true state is U .

True State
Decision rule outcome U U c

A lAU lAUc

Ac lAcU lAcUc

Table 1: Loss function

Now, following Geisser and Johnson (1992), given a decision rule R for modelMpj ,

the optimal decision is the one minimizing E(Loss | R), given by

E(Loss | R) = lAUPr(A,U) + lAUcPr(A,U c) + lAcUPr(A
c, U) + lAcUcPr(Ac, U c). (2)

If the cost associated to modelMpj , cj, is expressed in the same unit as the losses, then

we would minimize

f(E(Loss | R), cj) = E(Loss | R) + cj. (3)
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We can therefore estimate (3) for each model under consideration, and select the one

yielding the lowest expected loss. To do so, it is necessary to assign values to the

losses and the corresponding probabilities as expressed in (2). The order of magnitude

of the quantities in Table 1 is crucial for defining the optimal model, and this choice

depends on the analyst’s viewpoint. In authentication problems, it could be argued

that from the viewpoint of a “honest producer”, i.e. a producer that says the truth

with probability 1,

lAU ≤ lAcUc ≤ lAUc ≤ lAcU . (4)

The worst-case scenario occurs when U is present in the food under authentication but

the model estimates this to be not true. A customer may interpret such model results as

an indication that the producer is committing a fraud, and the losses for the producer

could be devastating. A different situation arises when the food under authentication

does not have the characteristic U , but the model estimates that U is present. If so, a

customer may think that the producer does not have enough knowledge of her product,

which could generate distrust and possible losses. When U is absent from the food

under authentication and the model estimates this to be true, the image of the honest

producer is strengthened and, probably, no loss is generated. The best scenario is when

U is present in the food, and the model estimates this to be true, in which case the

honest producer is reliable and most of the time a profit will be made.
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2.2 Estimation of the expected loss function

Note first that we can rewrite the expected loss function (2) as

E(Loss | R) = Pr(U)Pr(A | U)(lAU − lAcU)

+ (1− Pr(U))Pr(Ac | U c)(lAcUc − lAUc) + Pr(U)lAcU + (1− Pr(U))lAUc . (5)

Denote the probabilities in (5) as π = Pr(U), the probability that a randomly drawn

unit from the population exhibits characteristic U ; η = Pr(A | U), the probability that

the model correctly estimates the presence of U (sensitivity); and ϕ = Pr(Ac | U c), the

probability that the model correctly estimates the absence of U (specificity).

Conceptually, when all of these quantities are known, we only need to introduce

the costs and/or losses, and a few manipulations to determine the optimal decision

procedure, given an outcome of the classification model Mpj . In our case, as in many

other practical situations, π, η and ϕ are all unknown.

We describe now two different approaches for estimating the expected loss function

(5).

2.2.1 Geisser and Johnson Approach

A simple approach for estimating π, η and ϕ was proposed by Geisser and Johnson

(1992) in the context of a screening test. The method consists of applying the model to

n1 units which are known to have the characteristic U , and also to n2 units which are

known to be free of U . Assuming that r1 out of n1 yield A in the first sample, and r2 out

of n2 yield Ac in the second, we obtain binomial distributions for both r1 and r2, with

parameters η and ϕ, respectively. If π is unknown, we need an additional independent

sample of size ν, from which we can count the number tu of units having U . We obtain
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another binomial distribution for tu with parameter π. Let d = (r1, n1, r2, n2, tu, ν).

Since the samples are independent, the likelihood function is given by

L(η, ϕ, π | d) = L(η | n1, r1)L(ϕ | n2, r2)L(π | ν, tu). (6)

Under a Bayesian viewpoint it is necessary to assign prior distributions p(η, ϕ, π) on

(η, ϕ, π), from which the joint posterior density is obtained as

p(η, ϕ, π | d) ∝ p(η, ϕ, π)L(d | η, ϕ, π). (7)

We will discuss specific choices below.

We now describe how to obtain the quantities r1 and r2 from model Mpj , using

the predictive probability P (gn+1 = u|yn+1, yn), which can be approximated as (De la

Cruz-Meśıa and Quintana; 2007; Gutiérrez et al.; 2011)

P (gn+1 = u|yn+1, yn) ≈ 1

C

C∑
c=1

υup(y
n+1|Θ(c)

u )∑m
l=1 υlp(y

n+1|Θ(c)
l )

, (8)

where {Θ(c), c = 1, . . . , C} denote a sample of size C from the posterior distribution

p(θ | yn) under the classification model. Details of this model will be given in Section

3. We note that a conventional procedure consists of choosing action A (i.e., declare

feature U to be present in the sample) or Ac (i.e., feature U is absent), according to

the zero-one law (Hastie et al.; 2001):

ĝi = arg max
u

P (gi = u | yn) and ĝn+1 = arg max
u

P (gn+1 = u | yn, yn+1), (9)

i.e. assigning the label as the category that maximizes the classification probability
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(8). Instead, we use (8) as follows: take action A if P (gn+1 = u|yn+1, yn) > p0 and

Ac otherwise. This rule is of course dependent on the threshold or cut-off value p0.

Therefore, the results depend on the choice of p0 ∈ (0, 1), but it is easy to evaluate the

expected loss on a suitable grid of values on (0, 1), from which we can select the value

of p0 that gives the minimal expected loss.

2.2.2 Wang and Geisser Approach

A second approach for estimating η and ϕ, proposed by Wang and Geisser (2005) in

the context of dichotomization of screening test variables, consists of assuming that

lAU = lAcUc = 0 (i.e., no loss for right decisions), lAUc = b and lAcU = a with b ≤ a.

Under these assumptions, (5) simplifies to

E(Loss) = b(1− π)(1− ϕ) + aπ(1− η). (10)

Wang and Geisser (2005) further assume that 1− η and ϕ can be reexpressed in terms

of two distribution functions, η = 1−F1(`) and ϕ = F2(`) where ` is part of the output

of a classification model Mpj . We select ` = log(p(yn+1 | yn)), because the posterior

predictive density is the key element in a Bayesian classifier. In fact, the Monte Carlo

approximation in (8) is the average of posterior predictive odds for category u. Thus,

the logarithm of posterior predictive density is a very natural choice as an optimization

variable. This approach allows us to find the minimum expected loss with respect to

` and to find `0 = arg min`Loss(`), the optimal dichotomization of the classification

model Mpj . Assume that Fi has density function fi, depending on a parameter ξi,

i = 1, 2. To estimate ξ1 and ξ2, it is necessary to fit the model to n1 units for which

U is present, and also to n2 units for which U is absent. We refer to these as sub-
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populations i = 1, 2, respectively. For i = 1, 2, let `ij = {`ij1, . . . , `ijni
} denote the

values of log(p(yn+1 | yn)) obtained when model Mpj is applied to each of the ni units

above, and where j indexes the various groups or combinations of chemical compounds

to be considered. Wang and Geisser (2005) suggest using the predictive distribution

F̃ij(` | `ij) ∝
∫
Fi(` | ξi)

ni∏
m=1

fi(`ijm | ξi)pi(ξi)dξi i = 1, 2, (11)

from which the expected loss for model Mpj , as a function of `, can be expressed as

Lossj(`) = b(1− π){1− F̃2j(` | `2j)}+ aπF̃1j(` | `1j). (12)

The value of π can be inferred just as in Section 2.2.1. To simplify calculations, ensuring

the availability of an analytical expression for the posterior predictive distribution, we

assume, as an approximation, that `, the value of log(p(yn+1 | yn)), is distributed as

Fi ∼ N(µi, σ
2
i ), i = 1, 2 and that the prior distributions for µi and σ2

i are given by

pi(µi, σ
2
i ) = pi(µi | σ2

i )pi(σ
2
i ) = N(µi | µi0, ni0/σ2

i )IG(σ2
i | αi0, βi0), (13)

Here, ni0 is the hyperparameter that controls our prior knowledge about µi. The above

assumptions imply that the posterior predictive distribution follows a Student t distri-

bution (Wang and Geisser; 2005) t(τi, λi, νi), with parameters given by

τi =
ni0µi0 + ni ¯̀ij
ni0 + ni

λi =
ni + ni0

ni + ni0 + 1
(αi0 +

1

2
ni)

[
βi0 +

1

2
(ni − 1)s2ij +

1

2

ni0ni
ni0 + ni

(µi0 − ¯̀
ij)

2

]−1
νi = 2αi0 + ni.
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Here, ¯̀
ij is the mean of {`ij1, . . . `ijni

} and sij its sample variance. The value of `0 can

be obtained numerically from Newton-Raphson’s method. Given an initial value `
(k=0)
0 ,

we iteratively evaluate

`
(k)
0 = `

(k−1)
0 − Loss′(`

(k−1)
0 )

Loss′′(`
(k−1)
0 )

, k = 1, 2, ...,

until convergence is reached. Once `0 has been computed, we can estimate the minimum

expected loss in terms of arbitrary choices of a and b. Under the above assumptions,

we have that Loss′(`) and Loss′′(`) are given by

Loss′(`) = −b(1− π)A2

{
1 +

λ2
ν2

(`− τ2)2
}−(ν2+1)/2

+ aπA1

{
1 +

λ1
ν1

(`− τ1)2
}−(ν1+1)/2

(14)

Loss′′(`) = b(1− π)A2λ2
ν2 + 1

ν2
(`− τ2)

{
1 +

λ2
ν2

(`− τ2)2
}−(ν2+3)/2

(15)

−aπA1λ1
ν1 + 1

ν1
(`− τ1)

{
1 +

λ1
τ1

(`− τ1)2
}−(ν1+3)/2

,

where,

Ai =
Γ
(
νi+1
2

)
Γ
(
νi
2

)
Γ
(
1
2
)
(
λi
νi

)1/2 , for i = 1, 2.

Alternatively, we could try other approximations based on distributional assumptions

for `, such as a student t or a mixture of normals. For some choices, however, the

corresponding posterior predictive distribution is analytically unavailable. In those

cases, Wang and Geisser (2005) proposed using Markov Chain Monte Carlo (MCMC)

to generate a posterior sample ξi1, . . . , ξiC , for sub-population i = 1, 2. Conditional on

each ξil, we would sample an `∗il from Fi(· | ξil), i = 1, 2, l = 1, . . . , C. Then `0 can be
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approximated by minimizing

b(1− π)

{
1− 1

C

C∑
l=1

1(−∞,`]`
∗
2l

}
+ aπ

1

C

C∑
l=1

1(−∞,`]`
∗
1l, (16)

where

1(−∞,`]`
∗
il =

 1, if `∗il ∈ (−∞, `]

0, if `∗il /∈ (−∞, `].

Having the value of `0 available, we estimate the minimum expected loss as a function

of losses a and b which can vary on an arbitrary range. The final decision consists of

selecting the model that yields the minimum expected loss over the range of values for a

and b. An additional advantage of this approach is that we can evaluate the sensitivity

of conclusions to the choices of a and b.

3 Application to a simulated dataset

To illustrate the use of the proposed methodology we simulate a data set considering

m = 2, p = 4, k = 2 and n = 200. Here, m = 2 means that we have to classify between

two categories; p = 4 is the dimension of multivariate normal components; k = 2 means

that we have a categorical covariate z with two levels; and finally, n = 200 is the sample

size, where n1 = 100 are from category (sub-population) 1 and n2 = 100 come from

category 2. Given the simulation scenario, we will also assume the prevalence to be

known as π = 0.5.

The observations were simulated from a mixture distribution, with components given

by p-variate normal distributions. Specifically, we consider a four-component mixture,∑4
i=1 ωiN(µi,Σ), where µ1 = (0.8, 0.6, 1.4, 2.2)t and µ2 = (8.8, 8.6, 9.4, 10.2)t are the

14



● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●
●●

●

●

●
● ●

●

●
●

●●
●●

●

●

●

0 5 10

0
5

10

y1

y2

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●
●

●

● ●

●

●

●
●●

●

●

●

●

●

Category 1 level 1
Category 1 level 2
Category 2 level 1
Category 2 level 2

(a)

●

●

●
●

●

●●
● ●

●
●

●

●●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

● ●

●

●
●

●
●

● ●

●

●
●

●

●

●

●●
●

●
●

●

0 5 10

0
5

10

y3
y4

●

●
●●

●
● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

Category 1 level 1
Category 1 level 2
Category 2 level 1
Category 2 level 2

(b)

Figure 1: Simulated data. (a) components y1 and y2, (b) components y3 and y4.

means for category 1, levels 1 and 2 of the covariate, with weights ω1 = ω2 = 0.25;

µ3 = (1.2, 1.4, 2.6, 3.8)t and µ4 = (9.2, 9.4, 10.6, 11.8)t, are the means for category 2,

levels 1 and 2 of the covariate, with weights ω3 = ω4 = 0.25, Σ = Ip. Figure 1, panel

(a), shows scatter plots of the first two dimensions of the four dimensional dataset (y1

and y2), while the third and fourth dimensions (y3 and y4) are shown in panel (b). Our

aim here is to correctly classify circles and triangles, which represent the fixed covariate

x in model (17). Also, z is a discrete random covariate, indicated as solid/empty

symbols. Furthermore, it is clear that the data in Figure 1 are clustered in two groups,

which justifies using a flexible modeling approach.

We now need to specify a model for estimating P (gn+1 = u|yn+1, yn) and ` =

log(p(yn+1 | yn)), the input quantities in the decision problem under the two approaches

described in section 2. To this effect, we will use the model proposed by Gutiérrez and
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Quintana (2011) for food and beverages authentication, which was motivated by the

analysis of part of the wine dataset to be described in the next section. This model

turned out to be flexible and useful for classification in that context, outperforming

some other competing alternatives. The model considers a semiparametric multivariate

hierarchical linear mixed specification for the mean responses, and covariance matrices

that are specific to the classification categories. The model also considers a flexible dis-

tribution for the random effects, using the formalism of dependent random probability

measures as in De Iorio et al. (2004). Concretely, the model assumes

(yiu | xiu, ziu) ∼ Np(Bxiu + θiu,Σu), i = 1, . . . , nu, u = 1, . . . ,m (17)

θiu ∼ Hz(θiu)

Hz(θ) =

∫
N(θ | zα, τ)dG(α)

G ∼ DP (M,G0),

where yiu = (yi : gi = u), u = 1, . . . ,m is the response vector for the ith unit in the

uth group, and gi is the label for the ith unit. The subscript u denotes the group or

class in the classification context, B is a p × q matrix of fixed effects, with columns

give by B = [β1, β2, . . . , βq]. xiu = (xi : gi = u) is a vector of covariates in Rq for fixed

effects, θiu is a p× 1 vector of unit-specific random effects, ziu = (zi : gi = u) is a p× pk

design matrix for random effects, α is a pk× 1 vector of latent variables that define the

random effects, and DP (M,G0) denotes the Dirichlet process prior (Ferguson; 1973)

with total mass parameter M and centering distribution G0. Model (17) implies that

Hz(θ) =
∑∞

h=1whN(θ | zαh, τ) is an infinite mixture of normal distributions. As usual

in mixture models, posterior simulation proceeds by breaking the mixture in (17) via
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the introduction of latent variables αi:

θiu = ziuαi + ηi, αi ∼ G, G ∼ DP (M,G0), and ηi ∼ Np(0, τ). (18)

We choose a multivariate normal model for the base measure, G0 := Npk(0,Ω). Matrix

Ω in the model allows for correlation between all components of vector αi, which implies

correlation between different components of the response vector and between different

levels of z. Also, τ is the matrix of covariance for θiu. The Bayesian formulation of the

model is completed with a prior specified as follows. For matrix B we assume column-

wise independence, that is, β1, β2, . . . , βq are mutually independent with βj ∼ Np(β0j,Λ)

for j = 1, . . . , q. The prior distributions for the variance-covariance matrices Σu, u =

1, . . . ,m, and τ are given by Σ1, . . . ,Σm ∼ IWp(ν0, Q0) and τ ∼ IWp(γ0,Φ0), where

IWp(ν,Q) indicates the Inverse Wishart distribution on p dimensional positive definite

matrices, with ν degrees of freedom and mean (ν−p−1)−1Q. We complete the Bayesian

formulation of model (17) by assuming Ω ∼ IWpk(r0, R0), β01, . . . , β0q ∼ Np(α0, τ0),

Λ ∼ IWp(L0, t0), and M ∼ Ga(a1, a2), the Gamma distribution with mean a1/a2.

More details about properties and performance of the model and a suitable posterior

simulation scheme can be found in Gutiérrez and Quintana (2011). To illustrate the

methodology developed in section 2 we consider the models listed in Table 2.

Model Coordinate p
M1s y1, y2 2
M2s y3, y4 2
M3s y1, y2, y3, y4 4

Table 2: Proposed response vector for each model

The hyperparameter values in model (17) were taken as β0 = (0, . . . , 0)t, τ0 = 100Ip,
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Q0 = Ip, L0 = Ip, ν0 = p+2, r0 = pk+2, t0 = p+2, R0 = 1000Ipk, γ0 = p+2, φ0 = 0.1Ip

and a1 = a2 = 1. The resulting prior densities are proper, but the one for B is vague and

hence relatively uninformative. The prior density for Ω is relatively uninformative too.

All the prior variance-covariance matrices were assumed diagonal. Table 3 shows the

classification results obtained for the three models using the zero-one law, as described

in (9). Sorting the models in decreasing order by their classification performance we

have M3s, followed by M2s, and finally M1s.

M1s M2s M3s

1 2 1 2 1 2
Category 1 90 10 97 3 99 1

2 13 87 3 97 0 100

Table 3: Classification performance for the simulated dataset. The real state of nature
is represented by columns (1 and 2). The classification results are represented by rows.

Letting U denote category 1, each model in Table 2 was applied to the data simulated

as described earlier. From each model we estimated the quantities P (gn+1 = u|yn+1, yn),

and `ij = log(p(yn+1 | yn)), where as before, i indexes sub-populations with character-

istic U (i = 1) and U c (i = 2) and j refers to model Mpj . Recall also that quantity

P (gn+1 = u | yn+1, yn) is used to obtain r1j and r2j, the number of samples that yield

A and Ac from sub-populations 1 and 2, respectively, using model j.

For the first approach in Section 2.2.1 we complete the Bayesian formulation assum-

ing independent beta prior distributions for η and ϕ:

(η) ∼ Beta(1, 1), (ϕ) ∼ Beta(1, 1).

Recall also that we assume π to be known and fixed at 0.5. From the discussion

leading to (4), we choose lAU = 0 US$, lAcUc = 0 US$ (i.e., no loss for right decisions),
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lAcU = 10, 000 US$, and lAUc = 4, 000 US$. We also assume that the cost of collecting

data for these models were c1 = 200, c2 = 50 and c3 = 250 all in US$. These values,

though arbitrary, depict a scenario where measuring variables y1 and y2 to apply M1s

is more expensive than measuring coordinates y3 and y4 for modelM2s. Note also that

the cost ofM3s is c3 = c1 + c2 because that model uses all four coordinates y1, y2, y3, y4.

With the losses and costs described above we estimated the expected loss (5) as a

function of the threshold p0. The expected loss for each of the three models is given in

Figure 2.
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Figure 2: Expected loss as a function of p0

From Figure 2 we can see that the minimal expected loss for all models was reached

for values of p0 in the range of 0.4 to 0.5. In the above range, M2s and M3s obtained

the same performance and they are better than M1s. Because models M2s and M3s

have similar expected loss and M2s is cheaper than M3s, under this approach M2s

is preferred. To evaluate the sensitivity of the conclusions to the choices of lAcU and
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lAUc in Figure 3 we present the minimum expected loss. That is, the expected loss at

the optimal p0 value. The optimal p0 value was selected using a discrete grid in the

interval (0,1) following the ideas in Greiner (1996). For lAcU we evaluated the minimum

expected loss over the range from 50 (small loss) to 20, 000 US$, keeping lAUc fixed at

1 US$. For lAUc the minimum expected loss was calculated between 1 and 7, 000 US$,

keeping lAcU fixed at 10, 000 US$. These choices were motivated by inequality (4). The

optimal values of p0 vary between 0.34 and 0.41 for M1s, 0.41 to 0.53 for M2s, and

there is a unique p0 value forM3s, because, as we can see from Figure 3 (panel (a) and

(b)) M3s shows a linear behavior of the minimum expected loss. Thus, from Figure 2

and 3 we conclude that the group of variables formed by y3 and y4 provides the optimal

information.
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Figure 3: Minimum expected loss as a function of losses lAcU (a) and lAUc

(b)

For the second approach, described in Section 2.2.2, we selected the prior distribu-
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tion parameters as µi0 = 0, ni0 = 1, αi0 = 3, βi0 = 1. After a minimization process

we obtained `0, the optimal value of `, and evaluated the expected loss as a function

of losses lAcU = a and lAUc = b using the values of a and b as in the first approach.

Figure 4 shows the minimal expected loss as a function of loss a, panel (a), and the

minimal expected loss as a function of loss b, panel (b).
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Figure 4: Minimum expected loss as a function of losses a and b

From Figure 4, panel (a), we can see thatM2s yields the minimum expected loss as

a function of loss a; and from panel (b) the same model (M2s) produces the minimum

expected loss as a function of loss b. The above results agree with those obtained under

the previous approach. Furthermore, Figures 3 and 4 show that for all considered

values of a and b the conclusions are the same, therefore, these are invariant to the

choices of the values of losses in Table 1. Thus, variables y3 and y4 provide the optimal

information. It is interesting to point out that in this simulation example the best
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classification results are obtained using model M3s. But because the cost associated

with variables y1 and y2 is high, the model that uses all the available information is not

the optimal one. Of course, in this application, we deliberately simulated coordinates y3

and y4 to be more informative for classification purposes than coordinates y1 and y2. In

real applications though, we only have some intuition about the quality of information

for authentication problems, and it is in this aspect that the proposed methodology

could be useful.

4 Application to the wine dataset

The wine dataset consists of measurements of concentration of nineteen chemical com-

pounds on 149 samples of Chilean red wines. The grape varieties in the dataset are

Cabernet Sauvignon (101 samples), Carménère (29 samples) and Merlot (19 samples).

All wine samples come directly from wineries located in the valleys of Aconcagua,

Maipo, Rapel, Curicó and Maule. Most of the samples come from 2004 vintage and

some of them from 2002 vintage. These samples form a data set with mixed wine types,

representing the most abundant grape varieties cultivated in Chile across different val-

leys. Our aim is to verify grape authenticity using the decision theoretical approach

laid up in Section 2. From the nineteen compounds, nine correspond to Anthocyanins,

four are Organic Acids and six are Flavonols. A full list of the compounds is given in

the Appendix. All the compounds have been proposed and used for red wine variety

authentication, see e.g. von Baer et al. (2007). Anthocyanins are a group of chemical

compounds present on the grape skins, which are transferred to the wine during the

winemaking process. They also confer red wines their characteristic color. Anthocyanin

determination was made by reverse phase High Performance Liquid Chromatography

(HPLC), a chromatography technique that can separate a mixture of compounds and is

22



used in analytical chemistry to identify, quantify and purify the individual components

of complex mixtures, like wines and other beverages or foods. The analytical chemistry

procedure was based on the method described by Holbach et al. (1997), Otteneder et al.

(2002) and by the International Organization of Vine and Wine (OIV), as described

in OIV (2003), with minor modifications. More details about Anthocyanin determina-

tion can be found in von Baer et al. (2005) and von Baer et al. (2007). Additionally,

Flavonol and Organic Acids are antioxidant compounds. Flavonols were determined by

HPLC based on the methodology of McDonald et al. (1998) with minor modifications.

Organic Acids were determined by a combination of reverse phase and ion exclusion

chromatography in series, as described by Holbach et al. (2001) and OIV (2004). More

details about Flavonols and Organic Acid determination can be found in von Baer et al.

(2007).

We apply the methodology developed in Section 2 to determine the best combination

of chemical compounds for wine authentication. To do so, we consider fitting several

models, using the groups of compounds or combinations listed in Table 4 as response

vector, and grape variety and valley as covariates in all cases. For further discussion of

these covariates, see Gutiérrez and Quintana (2011).

Model Information # variables pj
Mp1 Anthocyanin 9
Mp2 Organic Acids 4
Mp3 Flavonol 6
Mp4 Anthocyanin, Organic Acids 13
Mp5 Anthocyanin, Flavonol 15
Mp6 Organic Acids, Flavonol 10
Mp7 Anthocyanin, Organic Acids, Flavonol 19

Table 4: Proposed response vectors for each model

The hyperparameter values in model (17) were taken as β0 = (0, . . . , 0)t, τ0 = 100Ip,
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Q0 = 0.1Ip, L0 = 0.01Ip, ν0 = p + 2, r0 = pk + 2, t0 = p + 2, R0 = 10Ipk, γ0 = p + 2,

φ0 = 0.01Ip and a1 = a2 = 1. The selected hyperparameter values imply proper but

vague prior distributions, representing the lack of genuine prior information on the

parameters. All the prior covariance matrices were assumed of diagonal form.

We fitted each of the seven models in Table 4, and in particular, evaluated the

classification performance using the wine data set described earlier. Quite remarkably,

all models yielded perfect classification (i.e., 100% accuracy) with the zero-one law over

the observed data (training set). To explore possible differences among these models, we

computed some model adequacy measures (a full leave-one-out cross-validation study of

each of the models is unnecessary for our purpose). Table 5 shows two model adequacy

measures, LPML and DIC. LPML (Geisser and Eddy; 1979) is the log-pseudo marginal

likelihood, defined as LPML =
∑n

i=1 log(CPOi), where the CPOi’s are the Conditional

Predictive Ordinates (Chen et al.; 2000). Models with higher LPML are preferred.

DIC is the Deviance Information Criterion proposed by Spiegelhalter et al. (2002), and

models with the smallest DIC values are preferred. We specifically compute DIC1

(Celeux et al.; 2006). For all models, the effective dimension pD as described in Celeux

et al. (2006) was positive. From Table 5 we can generally conclude that models including

more information perform better.

Model LPML DIC1

Mp1 1,095.7 -2,492.3
Mp2 163.2 -381.1
Mp3 294.2 -1,103.6
Mp4 1,348.7 -3,459.9
Mp5 1,833.7 -4,560.6
Mp6 665.2 -2,134.1
Mp7 2,097.3 -5,759.9

Table 5: Model adequacy measures
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In our application, U represents that the grape variety under consideration is cor-

rectly classified using the model described earlier. We therefore take the view of an

individual who wants to learn the best combination of chemical compounds to deter-

mine whether the wine variety under consideration is indeed as indicated in the bottle

label. Thus, when U = Cabernet Sauvignon, each model in Table 4 was applied to

n11 = 101 samples that are Cabernet Sauvignon, and n21 = 48 samples where U is ab-

sent, corresponding to the 29 Carménère plus 19 Merlot samples. Similarly, for Merlot

we apply the models to n12 = 19 samples (so n22 = 130), and for Carménère we have

n13 = 29 and n23 = 120. With these samples we obtained the values of rijm and `ijm,

for i = 1, 2, j = 1, 2, . . . , 7, and m = 1, 2, 3 where i denotes sub-population, j denotes

model Mpj , and m denotes the grape variety.

To estimate π we used an additional independent sample of size ν = 100, where the

number of Cabernet Sauvignon samples (as declared by the producer) was tu1 = 54, the

number of Merlot was tu2 = 20 and the number of Carménère was tu3 = 26. The above

sample was taken from part of the wine data that was not included in this application,

because of only partial availability of measurements for all the chemical compounds

included here.

Under the first approach, model specification is completed by assuming independent

beta prior distributions for π, η and ϕ:

(ηm) ∼ Beta(1, 1), (ϕm) ∼ Beta(1, 1) m = 1, 2, 3

(π1) ∼ Beta(2, 2), (π2) ∼ Beta(1, 3), (π3) ∼ Beta(1, 5).

The prior distribution for ηi and ϕi are proper and uninformative. The prior for π1 =

Pr(U = Cabernet Sauvignon), π2 = Pr(U = Merlot) and π3 = Pr(U = Carménère)
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were assigned using information about nation-wide production (thousands of liters by

grape variety) supplied by the National Statistics Institute of Chile (INE; 2008).

As part of routine procedures related to wine exports, a sample of bottles is taken

upon arrival to the corresponding customs point, and chemical analysis of the samples

is performed to verify authenticity. Specifically, the analysis may include measuring

concentrations for some of the chemical compounds, including those listed in Table 6.

The bottles in the sample are then representative of the whole set of bottles in the

container or batch. We therefore think of the loss as associated to a batch. From the

discussion leading to (4), we choose lAU = 0 US$, lAcUc = 0 US$ (i.e., no loss for right

decisions), lAcU = 10, 000 US$, and lAUc = 4, 000 US$. We note that the actual costs

for wrong decisions of a batch depend on additional information which we do not have,

such as the batch size, number of rejected bottles, transportation costs, publicity, etc.

Nevertheless, the above values were chosen having in mind that our goal is to select

a model, and that the expected loss for a particular model is not important in itself,

but in relative ordinal terms. In fact, all models assume the same loss, so what varies

between models is the cost of collecting data cj. The cost of an Anthocyanin analysis

for wines in a lab in Chile is about US $ 73.7, an Organic Acid analysis costs US $ 81.9,

and a Flavonol analysis costs US $ 102.4. Therefore the cost of collecting data for the

seven models were: c1 = 73.7, c2 = 81.9, c3 = 102.4, c4 = 155.6, c5 = 176.1, c6 = 184.3

and c7 = 258, all expressed in US$ as of January 2011 (von Baer; 2010).

With the losses and costs described above we estimated the expected loss (5) as a

function of the threshold p0. The expected loss for Cabernet Sauvignon for each of the

seven models is given in Figure 5.

For almost all values of p0, Mp1 is the best model. Mp2 has similar expected loss

thanMp1 . Therefore, measurements of Anthocyanins or Organic Acids are most useful
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Figure 5: Expected loss for Cabernet Sauvignon as a function of p0

when a producer wants to verify that a sample of wine is Cabernet Sauvignon. All

the expected loss functions in Figure 5 look similar, which is due to the similar classi-

fication of the seven models of Table 4. When examining the estimated probabilities

P̂ (gn+1 = u|yn+1, yn) for Cabernet Sauvignon samples, we realized that these values

were unusually high, e.g. about 0.9999. Thus the proposed model is very flexible for

classifying these data, to the point of rendering the expected loss not sensitive to the

value of p0. We also point out that this was not at all the case for the simulated data

example, indeed the behavior of the expected loss function was quite different, because

the simulated classification pattern was more complex. This explains why the expected

loss functions in Figure 5 are so flat. The zero-one law gives the same classification,

but when varying the value of p0, the expected loss for model 3, Mp3 in Figure 5,

27



exhibits some differences, because Flavonol concentrations are less informative than

Anthocyanins and Oganics Acids to authenticate Cabernet Sauvignon (von Baer et al.;

2007). Figure 6 shows the expected loss function for Merlot. In this case, Mp1 yields
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Figure 6: Expected loss for Merlot as function of p0

good results but not for all range of p0 values, as Mp3 is better than Mp1 when p0 is

near 1. Although the expected loss function for Mp2 is not invariant to the choice of

p0, for values of p0 in the range of 0.3 to 0.6 this model presents lower losses thanMp3 ,

and, moreover, it is cheaper. Therefore if a producer wants to verify that a sample of

wine is Merlot, measurements of Anthocyanins and Organic Acids are suggested.

Finally, Figure 7 shows the expected loss function for Carménère. We find thatMp1

is the best over a wide range of p0. When p0 is near 0.5,Mp2 has a similar performance

than Mp1 . On the other hand, Mp4 implies a bigger loss but it is almost invariant
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Figure 7: Expected loss for Carménère as a function of p0

to the choice of p0. Therefore if a producer wants to verify that a sample of wine

is Carménère, measurements of Anthocyanins and Organic Acids are the best choice.

Following the same scheme of analysis of the simulated data example, we evaluated the

sensitivity of the conclusions to the choices of lAcU and lAUc . Here, we used the same

range of values for lAcU and lAUc employed in the simulated data example. Figure 8

shows the minimal expected loss (that is, the expected loss at the optimal p0 value) as

function of lAcU (left panels) and lAUc (right panels) for the three grape varieties. The

minimum expected loss shows a linear behavior due to the flat shape of the expected

losses of the Figures 5, 6 and 7, due to the linear behavior there are unique optimal

values for p0. The optimal p0 value for Cabernet Sauvignon was 0.5 for Mp1 , Mp2 ,

Mp4 , Mp5 , Mp6 and Mp7 ; for Mp3 , p0 was 0.51. For Merlot, p0 was 0.5 in the case of
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Mp3 ,Mp4 ,Mp5 ,Mp6 andMp7 ; forMp1 p0 was 0.38 and 0.43 forMp2 . In the case of

Carménère, the optimal p0 was 0.5 forMp4 ,Mp5 ,Mp6 andMp7 ; for the other models

the values were 0.61 (Mp1), 0.56 (Mp2) and 0.49 (Mp3). The results from Figure 8 are

concordant with the results obtained in Figures 5, 6 and 7. In conclusion, under this

approach, measurements of Anthocyanins and Organic Acids are the best choice for the

three grape variety.

For the second approach described in Section 2.2.2, we selected the prior distribution

parameters as µi0 = 0, ni0 = 1, αi0 = 3, βi0 = 1 for the three grape varieties. After a

minimization process we obtained `0, the optimal value of `, and evaluated the expected

loss as a function of losses a and b. For a we evaluated the expected loss over the range

from 50 (small loss) to 20, 000 US$ (big loss), keeping b fixed at 1 US$. For b the

expected loss was calculated between 1 and 7, 000 US$, keeping a fixed at 10,000 US$.

These choices were motivated by inequality (4). Again, the losses of wrong decisions

are the same for all models and the cost of data collecting cj varies across models. The

loss ranges were selected so as to obtain a broad view of the minimum expected loss

under different scenarios. Under this approach we can see how sensitive our conclusions

are, regarding the choice of groups of chemical compounds, to the choice of values in

Table 1. The results are shown in Figure 9.

Figure 9 shows, for grape variety Cabernet Sauvignon, thatMp1 attains the minimal

expected loss for all values of a. A similar performance was obtained by Mp2 . For b,

Mp2 attains the minimal expected loss uniformly over the whole range. In the case

of Merlot the minimum expected loss is attained by Mp1 as function of a and Mp3 as

function of b, especially when b increases. For Carménère, Mp1 reached the minimum

loss; as function of b, Mp2 attains the minimum loss for the same grape variety.

Additionally, we performed a sensitivity analysis for different values of prevalence
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Figure 8: Minimum expected loss as a function of losses lAcU (left panels) and lAUc

(right panels).

(fixing π in 0.1, 0.2, . . . , 0.8 for each grape variety). From this analysis we found that

the prevalence affects the expected loss, but for all values of prevalence, the conclusions
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Figure 9: Minimum expected loss as function of losses a and b

for each grape variety were not affected.

In summary, the two approaches lead to the following conclusions: (i) to verify
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whether a wine sample is Cabernet Sauvignon or not, Anthocyanin or Organic Acid

measurements are more appropriate than Flavonols; (ii) to verify whether a wine sample

is Merlot or not, Anthocyanins or Flavonols are more appropriate than Organic Acids;

and (iii) to verify whether a wine sample is Carménère, Organic Acids or Anthocyanins

are appropriate. Figures 8 and 9 show that the conclusions are invariant to the values

in Table 1 for a broad range of loss values.

5 Concluding remarks

The methodology discussed allows the user to select the optimal information needed to

verify authenticity of red wine varieties. In our examples, the conclusions are invariant

to the choice of values in Table 1 under the constraint in (4). The methodology could be

applied to any authentication problem where more than one group of chemical markers

are available for the analysis. In the case of red wines, many chemical markers have

been proposed for authentication purposes, but as we can see in the results, different

groups of chemical markers provide different information. For instance, if we want to

verify whether a sample of wine is Cabernet Sauvignon or not, Anthocyanin or Organic

Acid measurements are more appropriate than Flavonols. The methodology allows us

to incorporate the cost of chemical determination, so an analyst can decide the best

combination of chemical compounds to use when verifying the authenticity of each

sample.

In our application we used a semiparametric Bayesian model, but the model could

be parametric as well, and there is no constrain about it. The focus is on the infor-

mation that the model uses, and as suggested by the adequacy measurements DIC and

LPLM, the more information we add to the model, generally the better fit we get. But

improving the fit might be too expensive, and so our approach balances the achieved

33



precision with the cost required to use the additional information. In that sense, the

conclusions we draw can be useful to producers and consumers, as they allow to focus

their efforts on the most appropriate combination of chemicals to consider for each wine

variety.
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6 Appendix

Anthocyanins Organic Acids Flavonols
Delphinidin-3-glucoside Tartaric Myricetin

Cyanidin-3-glucoside Shikimic Quercetin
Petunidin-3-glucoside Lactic Total myricetin
Peonidin-3-glucoside Acetic Total quercetin
Malvidin-3-glucoside Conjugate myricetin

Peonidin-3-acetylglucoside Conjugate quercetin
Malvidin-3-acetylglucoside

Peonidin-3-coumaroylglucoside
Malvidin-3-coumaroylglucoside

Table 6: Measured compounds
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