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Abstract

We present and discuss the class of dependent mixture models induced by diffusive measure-valued

GEM processes. These extend the family of diffusive Dirichlet mixtures to the multiparameter

case, including dependent Pitman–Yor mixtures as special cases, and have applications to Bayesian

nonparametric inference for dynamic density estimation with discretely collected data.
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1. Introduction

A current major research frontier in Bayesian nonparametric poses as the main task to

extend mixtures of type f̃P (y) =
∫

K(y|x)P (dx), where K(·|y) is a kernel density, and

P is a discrete random probability measure, to yield a dependent mixture of the type

f̃Pz
(y) =

∫

K(y|x)Pz(dx), (1)

where the random probability measure is now indexed by a covariate z. This entails accom-

modating forms of dependence more general than exchangeability. One such case is that of

partial exchangeability, whereby observations are assumed to be exchangeable condition-

ally on the values of z, but not overall exchangeable. This line of research was initiated

by MacEachern (1999, 2000), who proposed the so-called dependent Dirichlet process or

more generally a class of dependent processes given by the collection of random measures
{

Pz =
∞
∑

i=1

Wi(z)δXi(z), z ∈ Z

}

where the dependence is induced by means of z ∈ Z through the random weights Wi and/or

the random atoms Xi, for some appropriate space Z. A non exhaustive list of papers in this

area includes De Iorio et al. (2004); Gelfand et al. (2005); Dunson (2006); Griffin and Steel

(2006); Caron et al. (2008); Dunson, Pillai and Park (2007); Dunson and Park (2008); Caron et al.

(2007); Rodriguez and Ter Horst (2008); Fuentes-Garcı́a (1973); Mena et al. (2011); Caron et al.

(2016); Gutierrez et al. (2016); Mena and Ruggiero (2016). See also Hjort et al. (2010) and

references therein. For the case of Dirichlet processes (Ferguson, 1973), the time evolu-

tion has often been built into the process by exploiting its stick-breaking representation

(Sethuraman, 1994). For the Dirichlet case this is obtained by specifying the weights in

P =

∞
∑

i=1

WiδXi
(2)

as follows

W1 = V1, Wi = Vi

i−1
∏

j=1

(1− Vj), Vi
iid
∼ Beta(1, θ), (3)
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and associating to each of them a distinct location Xi ∈ X, where Xi
iid
∼ G∗ and G∗ is

nonatomic. The stick-breaking construction has demonstrated to lend itself quite easily to

the implementation in applied problems with the aid of Markov Chain Monte Carlo tech-

niques, most notably via exploitation of the slice sampler (Damien, Wakefield and Walker,

1999; Walker, 2007) and the retrospective sampler (Papaspiliopoulos and Roberts, 2008).

See also Ishwaran and James (2001).

In this note, we discuss some details on an extension of diffusive Dirichlet mixtures,

only briefly mentioned in Mena and Ruggiero (2016), to GEM diffusive mixtures. A diffu-

sive Dirichlet process is a collection of random probability measures

Pt =

∞
∑

i=1

Wi(t)δXi
, t ≥ 0, Xi

iid
∼ G∗ (4)

where

W1(t) = V1(t), Wi(t) = Vi(t)
∏

j<i

(1− Vj(t)), Vi(·)
iid
∼ WF(1, θ). (5)

Here Vi(·)
iid
∼ WF(1, θ) indicates that for each i ≥ 1, Vi(·) = {Vi(t), t ≥ 0} is defined to be

one-dimensional Wright–Fisher diffusion with parameters (1, θ), i.e. the unique solution in

[0, 1] of the stochastic differential equation

dV (t) =
1

2
[1− (1 + θ)V (t)]dt+

√

V (t)(1− V (t))dB(t), V (t) ∈ [0, 1], (6)

where B(t) denotes a one-dimensional standard Brownian motion. Such diffusion is sta-

tionary and reversible with respect to a Beta(1, θ) distribution, and this in turn implies that

(4) is a diffusion process, taking values in the space of discrete probability measures on X,

with marginal laws coinciding with that of a Dirichlet process. A diffusive Dirichlet mix-

ture is then defined through (1) by letting Pz be as in (4)-(6), with z being the time index

t.
Measure-valued diffusions are well known objects in population genetics, usually de-

scribing the temporal evolution of a large population of individuals or alleles, whose ran-

dom reproduction mechanism can be subject to mutation and possibly selection. See

Ethier and Kurtz (1993); Dawson (1993, 2010); Feng (2010) for reviews, and Ruggiero and Walker

(2009a,b); Prünster and Ruggiero (2013); Ruggiero et al. (2013); Papaspiliopoulos et al. (2016)

for some connections with Bayesian nonparametrics.

The proofs of the results presented in this note are easily adapted from Mena and Ruggiero

(2016), and therefore omitted.

2. GEM diffusive mixtures

Let a = (a1, a2, . . .) and b = (b1, b2, . . .) be vectors of positive parameters. The GEM

distribution with parameters (a,b) is the law of the vector W = (W1,W2, . . .), where

W1 = V1, Wi = Vi

i−1
∏

j=1

(1− Vj), Vi
ind
∼ Beta(ai, bi).

Here (a,b) are chosen so that the Wi’s sum up to one; see Ishwaran and James (2001).

When ai = 1 and bi = θ > 0 for all i ≥ 1, we recover the law GEM(θ) of the weights of a

Dirichlet process as in (3), and the law of the vector obtained by sorting in decreasing order
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the components of W is the Poisson–Dirichlet distribution with parameter θ (Kingman,

1975). See Ethier (1981); Ethier and Kurtz (1981) for related diffusion models. When

ai = 1−σ for all i ≥ 1 and b = (θ+σ, θ+2σ, . . .), we obtain the GEM(θ, σ) distribution,

whose decreasingly ordered components have the two-parameter Poisson–Dirichlet distri-

bution (Perman, Pitman and Yor, 1992; Pitman, 1995; Pitman and Yor, 1997). See Petrov

(2009); Ruggiero and Walker (2009b); Feng and Sun (2010); Costantini et al. (2016) for

related diffusion models.

Let now (V1(t), V2(t), . . .) be a collection of infinitely many independent Wright–

Fisher diffusions with parameters (ai, bi), where Vi(t) solves

dVi(t) =
1

2
[ai(1−V (t))− biV (t)]dt+

√

V (t)(1− V (t))dB(t), V (t) ∈ [0, 1]. (7)

A GEM(a,b) diffusion is defined as the vector process W (t) = (W1(t),W2(t), . . .) where

each component Wi(t) is constructed by means of the stick-breaking procedure

W1(t) = V1(t), Wi(t) = Vi(t)
∏

j<i

(1− Vj(t)), Vi(·)
ind
∼ WF(ai, bi). (8)

Feng and Wang (2007) characterised this class of processes, which are well defined infinite-

dimensional diffusions, whose sample paths are continuous functions from [0,∞) to the

infinite simplex

∆∞ =

{

w : (w1, w2, . . .) : wi ≥ 0,
∑

i≥1

wi = 1

}

.

When ai = 1 and bi = θ > 0 for all i ≥ 1, it is immediate that the GEM diffusions reduce

to (5)-(6).

Denote byBai,bi a Beta(ai, bi) distribution and, for a = (a1, a2, . . .) and b = (b1, b2, . . .),
let

Ba,b =

∞
∏

i=1

Bai,bi B̃a,b = Ba,b ◦ φ−1,

where φ is the function

φ : [0, 1]N → ∆∞

v = (v1, v2, . . .) 7→ φ1(v) = v1, φi(v) = vi(1− v1) · · · (1− vi−1), i ≥ 1.
(9)

From Feng and Wang (2007), Theorem 2.1, it follows that the GEM(a,b) diffusion has re-

versible measure B̃a,b. In particular, this implies that at stationarity the vector (W1(t),W2(t), . . .)
has the GEM(a,b) distribution.

Letting the dependence in a random probability measure of type (4) be induced by the

above construction, or, from a different viewpoint, attaching iid atoms to each component

of the GEM diffusion, leads easily to the definition of measure-valued GEM processes.

Definition 2.1. Let a = (a1, a2, . . .) and b = (b1, b2, . . .), where ai, bi > 0 for all i ≥ 1. A

measure-valued GEM diffusion is a dependent random probability measure

Pt =
∑

i≥1

Wi(t)δXi
, t ≥ 0,

with weights given by the GEM(a,b) diffusion W (t) defined as in (8) and atoms Xi
iid
∼ G∗,

where G∗ is a non atomic probability measure on X. �
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We will denote by MV-GEM(a,b) the measure-valued process P = {Pt, t ≥ 0} of

Definition 2.1. The following proposition shows that a measure-valued GEM process has

nice path properties. In particular it is Feller, hence strong Markov, and has trajectories

given by continuous functions from [0,∞) to the set P(X) of discrete probability measures

on X.

Proposition 2.2. Let Pt be a measure-valued GEM(a,b) process as in Definition 2.1. Then

Pt is a Feller process with almost surely continuous sample paths from [0,∞) to P(X).

We now turn to stationarity. The following result identifies the reversible measure of

the measure-valued GEM process. For any fixed sequence x = (xi)i≥1, denote by ϕx :
∆∞ ×X

∞ → P(X) the transformation

ϕx(φ(v)) =

∞
∑

i=1

wiδxi
, (10)

where φ(v) is as in (9).

Proposition 2.3. Let P be a MV-GEM(a,b) process. Then P is reversible with respect to

Ba,b = B̃a,b ◦ ϕ
−1
x .

From Proposition 2.3 it follows immediately that a measure-valued GEM(a,b) process

has invariant measure Ba,b. Again, two immediate special cases implied by this stationarity

result are familiar: when ai = 1, bi = θ > 0 for all i ≥ 1, Pt is marginally a Dirichlet

process; when ai = 1− σ for all i ≥ 1 and b = (θ + σ, θ + 2σ, . . .), then Pt is marginally

a Pitman–Yor process.

Measure-valued GEM processes are therefore amenable to be used at the top level

of Bayesian nonparametric mixtures in a time dependent framework, to define a class of

diffusive dependent GEM mixtures. This entails considering the hierarchical model

y|x ∼ K(y|x)

x|t, Pt ∼ Pt

P = {Pt}t≥0 ∼ MV-GEM(a,b)

(11)

or equivalently (1) with a MV-GEM(a,b) process in place of Pz . This formulation provides

additional flexibility with respect to the diffusive Dirichlet mixture of Mena and Ruggiero

(2016). Note that by restricting (11) to a single t yields the class of mixture models consid-

ered in Ishwaran and James (2001).

3. Posterior computation

Mena and Ruggiero (2016) presented a Gibbs sampler algorithm that can be used for pos-

terior inference under the mixture model (11) when P is a diffusive Dirichlet process. Here

we highlight the differences with respect to the Dirichlet case, and refer the reader to Sec-

tion 4 and Appendix B of the cited source for further details.

We assume for simplicity that univariate data points y(n) = (yt1 , . . . , ytn) are observed

at times 0 ≤ t1 < . . . < tn, where time intervals need not be equally spaced. The target

of inference is the data generating time-varying distribution (1), such that yti ∼ f̃Pti
where

we model P = {Pt}t≥0 ∼ MV-GEM(a,b). To this end, let V (t) = (V1(t), V2(t), . . .) be

as in (8). The above non-parametric mixture model can be written as

fPt
(y | V (t),X) =

∑

j≥1

Wj(t)K(y | Xj). (12)
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Following Walker (2007) this random density can be augmented to

fPt
(y, u, s | V (t),X) = I(u < Ws(t))K(y | Xs) (13)

or to a variation of it aimed at a more efficient MCMC, given by

fPt
(y, u, s | V (t),X) = ψ−1

s I(u < ψs)Ws(t)K(y | Xs) (14)

where s 7→ ψs is a N-valued function with known inverse ψ∗, e.g. e−ηs, for 0 ≤ η ≤ 1.

The latent variable s indexes the specific kernel K which better represents the observation

y and u ∼ U(0, ψs). Notice that when ψs = Ws we can recover (13) from (14). See

Kalli et al. (2011) for more details on (14). The conditional augmented likelihood is given

by

L
(

y(n),u(n), s(n) | V (t),X
)

=

n
∏

i=1

ψ−1
si

I(ui < ψsi)



Vsi(ti)
∏

k<si

(1− Vk(ti))



 K(yi | Xsi)

where y(n) := (y1, . . . , yn), u(n) := (u1, . . . , un), s(n) := (s1, . . . , sn), yi := yti ,
ui := uti and si := sti . The random truncation induced by the slice sampler in Walker

(2007) simplifies the posterior learning process, thus now we have to learn about the first

m Wright–Fisher processes and locations. The value of m is an integer given

m := max(⌊ψ∗(ut1)⌋, ⌊ψ
∗(ut2)⌋, . . . , ⌊ψ

∗(utn)⌋),

with ⌊A⌋ denoting the integer part of A. Under the above setting, at each iteration of the

algorithm, we have to update a matrix V of dimension m × n and a vector x of length m.

Each row of V denoted by v
(n)
j is a stochastic process and the m processes are mutually

independent. The assumption of independence also holds for the m locations, denoted here

by x. Thus, the prior distribution on V and x can be defined as

L(V) =
m
∏

j=1

L(v
(n)
j ), and L(x) =

m
∏

j=1

L(xj)

where

L(v
(n)
j ) = πv(vj(t1))

n
∏

i=2

pv(vj(ti) | vj(ti−1)),

with πv := Beta(a1, b1) and pv is the transition density of the Wright–Fisher diffusion

process. An expression for such a transition density can be found in Ethier and Griffiths

(1993), and is given by

pv(vj(tj) | vj(tj−1)) =

∞
∑

k=0

qθk(t)

k
∑

l=0

Beta(vj(tj) | a+ l, b+ k − l)Bin(l | k, vj(tj−1)) (15)

where Beta(· | a, b) is the Beta density with parameters a, b, Bin(· | m, q) is the Binomial

probability mass function withm trials and success probability q and qθk(t) are the transition

probabilities of a death process with an entrance boundary of infinity, and death rates k(k+
θ − 1)/2, k ≥ 1. See Griffiths and Spanò (2010). With the above elements we have that

the posterior distribution for V and x is given by

L(V, x | y(n),u(n), s(n)) ∝ L(y(n),u(n), s(n) | V, x)L(V)L(x) (16)

The posterior distribution remains the unchanged prior for all vl when l > m.
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3.1 Updating the locations

As locations are not time dependent we have that,

L(xj | · · · ) ∝ L(xj)
∏

{i:si=j}

K(yti | xj) (17)

which is the usual way of update the parameters in a mixture model.

3.2 Updating of the weights processes

For each process j = 1, . . . ,m and i 6= 1, n the weight process is updated component–wise

by

L(vj(ti) | · · · ) ∝ pv(vj(ti+1) | vj(ti)) pv(vj(ti) | vj(ti−1))

× vj(ti)
I(si=j) (1− vj(ti))

I(si>j) (18)

and

L(vj(t1) | · · · ) ∝ pv(vj(t2) | vj(t1)) pv(vj(t1))

× vj(t1)
I(s1=j) (1− vj(t1))

I(s1>j) (19)

L(vj(tn) | · · · ) ∝ pv(vj(tn) | vj(tn−1))

× vj(tn)
I(sn=j) (1− vj(tn))

I(sn>j) (20)

3.3 Updating of the slice and membership variables

The slice variable u is updated from a uniform distribution given by

L(uti | · · · ) = U(0, ψsti
)

and the membership variable s from a discrete distribution given by

L(sti | · · · ) ∝ ψ−1
sti
wsti

(ti)K(yti | xsti (ti)) I(sti ∈
{

k : ψsti
> uti

}

)

Notice that since
{

k : ψsti
> uti

}

is a finite set, this latter distribution is easy to sample,

i.e. from sti = 1, . . . , ⌊ψ∗(uti)⌋.

The resulting Monte Carlo sample can be used for computing various estimates of in-

terest, such as, e.g., the estimated posterior density f̂Pt
, posterior mean functionals ηt =

∫

yf̂Pt
(y)dy and their moments, or for constructing appropriate credible intervals.
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